↓ Skip to main content

Sustained activation of c-jun-terminal kinase (JNK) is closely related to arsenic trioxide-induced apoptosis in an acute myeloid leukemia (M2)-derived cell line, NKM-1

Overview of attention for article published in Leukemia, August 2003
Altmetric Badge

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sustained activation of c-jun-terminal kinase (JNK) is closely related to arsenic trioxide-induced apoptosis in an acute myeloid leukemia (M2)-derived cell line, NKM-1
Published in
Leukemia, August 2003
DOI 10.1038/sj.leu.2403120
Pubmed ID
Authors

T Kajiguchi, K Yamamoto, K Hossain, A A Akhand, I Nakashima, T Naoe, H Saito, N Emi

Abstract

High concentrations (greater than 5 microM) of arsenic trioxide (As(2)O(3)) have been reported to be able to induce apoptosis in several malignant cells. We explored cell lines in which apoptosis was induced with a therapeutic concentration (1-2 microM) of As(2)O(3), and found that 1 microM of As(2)O(3) induced apoptosis in the NKM-1 cell line, which was established from a patient with acute myeloid leukemia (M2). Apoptosis induced by 1 microM of As(2)O(3) in NKM-1 cells was accompanied by an increased cellular content of H(2)O(2), a decreased mitochondrial membrane potential (Deltapsim), and activation of caspase-3. C-Jun-terminal kinase (JNK) was activated only in NKM-1 cells and arsenic-sensitive NB4 cells, but not in arsenic-insensitive HL-60 cells. Activation of JNK in NKM-1 was sustained from 6 to 24 h after As(2)O(3) treatment, and preceded changes in cellular H(2)O(2), Deltapsim, and caspase-3 activation. Moreover, addition of a JNK inhibitor reduced the percentage of apoptotic cells after the As(2)O(3) treatment. Taken together, in the M2 cell line NKM-1, 1 microM of As(2)O(3) induced sustained activation of JNK and apoptosis. This finding may provide a basis to select a subgroup other than acute promyelocytic leukemia, which can benefit from As(2)O(3) treatment.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 20%
Student > Bachelor 1 20%
Researcher 1 20%
Student > Master 1 20%
Unknown 1 20%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 20%
Agricultural and Biological Sciences 1 20%
Medicine and Dentistry 1 20%
Engineering 1 20%
Unknown 1 20%