↓ Skip to main content

Pathogen-reduced platelets for the prevention of bleeding

Overview of attention for article published in Cochrane database of systematic reviews, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (73rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 tweeters
wikipedia
2 Wikipedia pages
f1000
1 research highlight platform

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
137 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pathogen-reduced platelets for the prevention of bleeding
Published in
Cochrane database of systematic reviews, July 2017
DOI 10.1002/14651858.cd009072.pub3
Pubmed ID
Authors

Lise J Estcourt, Reem Malouf, Sally Hopewell, Marialena Trivella, Carolyn Doree, Simon J Stanworth, Michael F Murphy

Abstract

Platelet transfusions are used to prevent and treat bleeding in people who are thrombocytopenic. Despite improvements in donor screening and laboratory testing, a small risk of viral, bacterial, or protozoal contamination of platelets remains. There is also an ongoing risk from newly emerging blood transfusion-transmitted infections for which laboratory tests may not be available at the time of initial outbreak.One solution to reduce the risk of blood transfusion-transmitted infections from platelet transfusion is photochemical pathogen reduction, in which pathogens are either inactivated or significantly depleted in number, thereby reducing the chance of transmission. This process might offer additional benefits, including platelet shelf-life extension, and negate the requirement for gamma-irradiation of platelets. Although current pathogen-reduction technologies have been proven to reduce pathogen load in platelet concentrates, a number of published clinical studies have raised concerns about the effectiveness of pathogen-reduced platelets for post-transfusion platelet count recovery and the prevention of bleeding when compared with standard platelets.This is an update of a Cochrane review first published in 2013. To assess the effectiveness of pathogen-reduced platelets for the prevention of bleeding in people of any age requiring platelet transfusions. We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 24 October 2016. We included RCTs comparing the transfusion of pathogen-reduced platelets with standard platelets, or comparing different types of pathogen-reduced platelets. We used the standard methodological procedures expected by Cochrane. We identified five new trials in this update of the review. A total of 15 trials were eligible for inclusion in this review, 12 completed trials (2075 participants) and three ongoing trials. Ten of the 12 completed trials were included in the original review. We did not identify any RCTs comparing the transfusion of one type of pathogen-reduced platelets with another.Nine trials compared Intercept® pathogen-reduced platelets to standard platelets, two trials compared Mirasol® pathogen-reduced platelets to standard platelets; and one trial compared both pathogen-reduced platelets types to standard platelets. Three RCTs were randomised cross-over trials, and nine were parallel-group trials. Of the 2075 participants enrolled in the trials, 1981 participants received at least one platelet transfusion (1662 participants in Intercept® platelet trials and 319 in Mirasol® platelet trials).One trial included children requiring cardiac surgery (16 participants) or adults requiring a liver transplant (28 participants). All of the other participants were thrombocytopenic individuals who had a haematological or oncological diagnosis. Eight trials included only adults.Four of the included studies were at low risk of bias in every domain, while the remaining eight included studies had some threats to validity.Overall, the quality of the evidence was low to high across different outcomes according to GRADE methodology.We are very uncertain as to whether pathogen-reduced platelets increase the risk of any bleeding (World Health Organization (WHO) Grade 1 to 4) (5 trials, 1085 participants; fixed-effect risk ratio (RR) 1.09, 95% confidence interval (CI) 1.02 to 1.15; I(2) = 59%, random-effect RR 1.14, 95% CI 0.93 to 1.38; I(2) = 59%; low-quality evidence).There was no evidence of a difference between pathogen-reduced platelets and standard platelets in the incidence of clinically significant bleeding complications (WHO Grade 2 or higher) (5 trials, 1392 participants; RR 1.10, 95% CI 0.97 to 1.25; I(2) = 0%; moderate-quality evidence), and there is probably no difference in the risk of developing severe bleeding (WHO Grade 3 or higher) (6 trials, 1495 participants; RR 1.24, 95% CI 0.76 to 2.02; I(2) = 32%; moderate-quality evidence).There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of all-cause mortality at 4 to 12 weeks (6 trials, 1509 participants; RR 0.81, 95% CI 0.50 to 1.29; I(2) = 26%; moderate-quality evidence).There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of serious adverse events (7 trials, 1340 participants; RR 1.09, 95% CI 0.88 to 1.35; I(2) = 0%; moderate-quality evidence). However, no bacterial transfusion-transmitted infections occurred in the six trials that reported this outcome.Participants who received pathogen-reduced platelet transfusions had an increased risk of developing platelet refractoriness (7 trials, 1525 participants; RR 2.94, 95% CI 2.08 to 4.16; I(2) = 0%; high-quality evidence), though the definition of platelet refractoriness differed between trials.Participants who received pathogen-reduced platelet transfusions required more platelet transfusions (6 trials, 1509 participants; mean difference (MD) 1.23, 95% CI 0.86 to 1.61; I(2) = 27%; high-quality evidence), and there was probably a shorter time interval between transfusions (6 trials, 1489 participants; MD -0.42, 95% CI -0.53 to -0.32; I(2) = 29%; moderate-quality evidence). Participants who received pathogen-reduced platelet transfusions had a lower 24-hour corrected-count increment (7 trials, 1681 participants; MD -3.02, 95% CI -3.57 to -2.48; I(2) = 15%; high-quality evidence).None of the studies reported quality of life.We did not evaluate any economic outcomes.There was evidence of subgroup differences in multiple transfusion trials between the two pathogen-reduced platelet technologies assessed in this review (Intercept® and Mirasol®) for all-cause mortality and the interval between platelet transfusions (favouring Intercept®). Findings from this review were based on 12 trials, and of the 1981 participants who received a platelet transfusion only 44 did not have a haematological or oncological diagnosis.In people with haematological or oncological disorders who are thrombocytopenic due to their disease or its treatment, we found high-quality evidence that pathogen-reduced platelet transfusions increase the risk of platelet refractoriness and the platelet transfusion requirement. We found moderate-quality evidence that pathogen-reduced platelet transfusions do not affect all-cause mortality, the risk of clinically significant or severe bleeding, or the risk of a serious adverse event. There was insufficient evidence for people with other diagnoses.All three ongoing trials are in adults (planned recruitment 1375 participants) with a haematological or oncological diagnosis.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 137 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Unknown 136 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 19 14%
Researcher 18 13%
Student > Bachelor 17 12%
Other 16 12%
Student > Postgraduate 10 7%
Other 25 18%
Unknown 32 23%
Readers by discipline Count As %
Medicine and Dentistry 53 39%
Nursing and Health Professions 11 8%
Biochemistry, Genetics and Molecular Biology 5 4%
Agricultural and Biological Sciences 5 4%
Pharmacology, Toxicology and Pharmaceutical Science 5 4%
Other 20 15%
Unknown 38 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 April 2020.
All research outputs
#3,625,664
of 15,411,062 outputs
Outputs from Cochrane database of systematic reviews
#6,067
of 11,183 outputs
Outputs of similar age
#72,285
of 270,671 outputs
Outputs of similar age from Cochrane database of systematic reviews
#167
of 257 outputs
Altmetric has tracked 15,411,062 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,183 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.1. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,671 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.
We're also able to compare this research output to 257 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.