↓ Skip to main content

Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping

Overview of attention for article published in Critical Reviews in Diagnostic Imaging, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
31 X users
facebook
1 Facebook page

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
58 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quantification of both the area-at-risk and acute myocardial infarct size in ST-segment elevation myocardial infarction using T1-mapping
Published in
Critical Reviews in Diagnostic Imaging, August 2017
DOI 10.1186/s12968-017-0370-6
Pubmed ID
Authors

Heerajnarain Bulluck, Matthew Hammond-Haley, Marianna Fontana, Daniel S. Knight, Alex Sirker, Anna S. Herrey, Charlotte Manisty, Peter Kellman, James C. Moon, Derek J. Hausenloy

Abstract

A comprehensive cardiovascular magnetic resonance (CMR) in reperfused ST-segment myocardial infarction (STEMI) patients can be challenging to perform and can be time-consuming. We aimed to investigate whether native T1-mapping can accurately delineate the edema-based area-at-risk (AAR) and post-contrast T1-mapping and synthetic late gadolinium (LGE) images can quantify MI size at 1.5 T. Conventional LGE imaging and T2-mapping could then be omitted, thereby shortening the scan duration. Twenty-eight STEMI patients underwent a CMR scan at 1.5 T, 3 ± 1 days following primary percutaneous coronary intervention. The AAR was quantified using both native T1 and T2-mapping. MI size was quantified using conventional LGE, post-contrast T1-mapping and synthetic magnitude-reconstructed inversion recovery (MagIR) LGE and synthetic phase-sensitive inversion recovery (PSIR) LGE, derived from the post-contrast T1 maps. Native T1-mapping performed as well as T2-mapping in delineating the AAR (41.6 ± 11.9% of the left ventricle [% LV] versus 41.7 ± 12.2% LV, P = 0.72; R(2) 0.97; ICC 0.986 (0.969-0.993); bias -0.1 ± 4.2% LV). There were excellent correlation and inter-method agreement with no bias, between MI size by conventional LGE, synthetic MagIR LGE (bias 0.2 ± 2.2%LV, P = 0.35), synthetic PSIR LGE (bias 0.4 ± 2.2% LV, P = 0.060) and post-contrast T1-mapping (bias 0.3 ± 1.8% LV, P = 0.10). The mean scan duration was 58 ± 4 min. Not performing T2 mapping (6 ± 1 min) and conventional LGE (10 ± 1 min) would shorten the CMR study by 15-20 min. T1-mapping can accurately quantify both the edema-based AAR (using native T1 maps) and acute MI size (using post-contrast T1 maps) in STEMI patients without major cardiovascular risk factors. This approach would shorten the duration of a comprehensive CMR study without significantly compromising on data acquisition and would obviate the need to perform T2 maps and LGE imaging.

X Demographics

X Demographics

The data shown below were collected from the profiles of 31 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 58 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 22%
Student > Ph. D. Student 7 12%
Other 4 7%
Student > Master 4 7%
Student > Bachelor 4 7%
Other 14 24%
Unknown 12 21%
Readers by discipline Count As %
Medicine and Dentistry 26 45%
Engineering 3 5%
Nursing and Health Professions 3 5%
Mathematics 2 3%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 5 9%
Unknown 17 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 17. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2018.
All research outputs
#2,159,170
of 25,728,855 outputs
Outputs from Critical Reviews in Diagnostic Imaging
#80
of 1,386 outputs
Outputs of similar age
#39,945
of 328,475 outputs
Outputs of similar age from Critical Reviews in Diagnostic Imaging
#2
of 24 outputs
Altmetric has tracked 25,728,855 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,386 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,475 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.