↓ Skip to main content

Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network

Overview of attention for article published in BioData Mining, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
5 X users

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network
Published in
BioData Mining, August 2017
DOI 10.1186/s13040-017-0146-4
Pubmed ID
Authors

Mina Moradi Kordmahalleh, Mohammad Gorji Sefidmazgi, Scott H. Harrison, Abdollah Homaifar

Abstract

The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network sizes and levels of stochastic noise. We found our HRNN method to be superior in terms of accuracy for nonlinear data sets with higher amounts of noise. The proposed method identifies time-delayed gene-gene interactions of GRNs. The topology-based advancement of our HRNN worked as expected by more effectively modeling nonlinear data sets. As a non-fully connected network, an added benefit to HRNN was how it helped to find the few genes which regulated the target gene over different time delays.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 36 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 22%
Student > Ph. D. Student 8 22%
Student > Master 4 11%
Other 3 8%
Student > Doctoral Student 1 3%
Other 2 6%
Unknown 10 28%
Readers by discipline Count As %
Computer Science 5 14%
Biochemistry, Genetics and Molecular Biology 5 14%
Agricultural and Biological Sciences 4 11%
Engineering 3 8%
Mathematics 2 6%
Other 6 17%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2017.
All research outputs
#13,565,862
of 22,996,001 outputs
Outputs from BioData Mining
#187
of 309 outputs
Outputs of similar age
#160,840
of 317,591 outputs
Outputs of similar age from BioData Mining
#8
of 11 outputs
Altmetric has tracked 22,996,001 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 309 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.7. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,591 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.