↓ Skip to main content

Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells

Overview of attention for article published in Stem Cell Research & Therapy, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
56 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells
Published in
Stem Cell Research & Therapy, August 2017
DOI 10.1186/s13287-017-0636-9
Pubmed ID
Authors

Jinzhi You, Jiacheng Sun, Teng Ma, Ziying Yang, Xu Wang, Zhiwei Zhang, Jingjing Li, Longgang Wang, Masaaki Ii, Junjie Yang, Zhenya Shen

Abstract

Neovascularization is impaired in diabetes mellitus, which leads to the development of peripheral arterial disease and is mainly attributed to the dysfunction of endothelial progenitor cells (EPCs). Previous studies proved the promotional effect of curcumin on neovascularization in wound healing of diabetes. Thus, we hypothesize that curcumin could promote neovascularization at sites of hindlimb ischemia in diabetes and might take effect via modulating the function of EPCs. Streptozotocin-induced type 1 diabetic mice and nondiabetic mice both received unilateral hindlimb ischemic surgery. Curcumin was then administrated to the mice by lavage for 14 days consecutively. Laser Doppler perfusion imaging was conducted to demonstrate the blood flow reperfusion. Capillary density was measured in the ischemic gastrocnemius muscle. In addition, angiogenesis, migration, proliferation abilities, and senescence were determined in EPCs isolated from diabetic and nondiabetic mice. Quantitative PCR was then used to determine the mRNA expression of vascular endothelial growth factor (VEGF) and angiopoetin-1 (Ang-1) in EPCs. Curcumin application to type 1 diabetic mice significantly improved blood reperfusion and increased the capillary density in ischemic hindlimbs. The in-vitro study also revealed that the angiogenesis, migration, and proliferation abilities of EPCs and the number of senescent EPCs were reversed by curcumin application. Quantitative PCR confirmed the overexpression of VEGF-A and Ang-1 in EPCs after curcumin treatment. Curcumin could enhance neovascularization via promoting the function of EPCs in a diabetic mouse hindlimb ischemia model.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 23%
Student > Ph. D. Student 10 18%
Researcher 7 13%
Student > Master 4 7%
Lecturer 3 5%
Other 12 21%
Unknown 7 13%
Readers by discipline Count As %
Medicine and Dentistry 17 30%
Biochemistry, Genetics and Molecular Biology 8 14%
Agricultural and Biological Sciences 6 11%
Nursing and Health Professions 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 3 5%
Other 10 18%
Unknown 8 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 July 2023.
All research outputs
#14,850,310
of 24,053,881 outputs
Outputs from Stem Cell Research & Therapy
#1,117
of 2,567 outputs
Outputs of similar age
#174,038
of 320,706 outputs
Outputs of similar age from Stem Cell Research & Therapy
#21
of 48 outputs
Altmetric has tracked 24,053,881 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,567 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,706 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.