↓ Skip to main content

Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial

Overview of attention for article published in Critical Care, August 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (54th percentile)

Mentioned by

twitter
28 X users
facebook
1 Facebook page

Citations

dimensions_citation
53 Dimensions

Readers on

mendeley
131 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Software-guided versus nurse-directed blood glucose control in critically ill patients: the LOGIC-2 multicenter randomized controlled clinical trial
Published in
Critical Care, August 2017
DOI 10.1186/s13054-017-1799-6
Pubmed ID
Authors

Jasperina Dubois, Tom Van Herpe, Roosmarijn T. van Hooijdonk, Ruben Wouters, Domien Coart, Pieter Wouters, Aimé Van Assche, Guy Veraghtert, Bart De Moor, Joost Wauters, Alexander Wilmer, Marcus J. Schultz, Greet Van den Berghe, Dieter Mesotten

Abstract

Blood glucose control in the intensive care unit (ICU) has the potential to save lives. However, maintaining blood glucose concentrations within a chosen target range is difficult in clinical practice and holds risk of potentially harmful hypoglycemia. Clinically validated computer algorithms to guide insulin dosing by nurses have been advocated for better and safer blood glucose control. We conducted an international, multicenter, randomized controlled trial involving 1550 adult, medical and surgical critically ill patients, requiring blood glucose control. Patients were randomly assigned to algorithm-guided blood glucose control (LOGIC-C, n = 777) or blood glucose control by trained nurses (Nurse-C, n = 773) during ICU stay, according to the local target range (80-110 mg/dL or 90-145 mg/dL). The primary outcome measure was the quality of blood glucose control, assessed by the glycemic penalty index (GPI), a measure that penalizes hypoglycemic and hyperglycemic deviations from the chosen target range. Incidence of severe hypoglycemia (<40 mg/dL) was the main safety outcome measure. New infections in ICU, duration of hospital stay, landmark 90-day mortality and quality of life were clinical safety outcome measures. The median GPI was lower in the LOGIC-C (10.8 IQR 6.2-16.1) than in the Nurse-C group (17.1 IQR 10.6-26.2) (P < 0.001). Mean blood glucose was 111 mg/dL (SD 15) in LOCIC-C versus 119 mg/dL (SD 21) in Nurse-C, whereas the median time-in-target range was 67.0% (IQR 52.1-80.1) in LOGIC-C versus 47.1% (IQR 28.1-65.0) in the Nurse-C group (both P < 0.001). The fraction of patients with severe hypoglycemia did not differ between LOGIC-C (0.9%) and Nurse-C (1.2%) (P = 0.6). The clinical safety outcomes did not differ between groups. The sampling interval was 2.3 h (SD 0.5) in the LOGIC-C group versus 3.0 h (SD 0.8) in the Nurse-C group (P < 0.001). In a randomized controlled trial of a mixed critically ill patient population, the use of the LOGIC-Insulin blood glucose control algorithm, compared with blood glucose control by expert nurses, improved the quality of blood glucose control without increasing hypoglycemia. ClinicalTrials.gov, NCT02056353 . Registered on 4 February 2014.

X Demographics

X Demographics

The data shown below were collected from the profiles of 28 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 131 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 131 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 19 15%
Researcher 13 10%
Student > Bachelor 13 10%
Student > Ph. D. Student 10 8%
Other 10 8%
Other 25 19%
Unknown 41 31%
Readers by discipline Count As %
Medicine and Dentistry 43 33%
Nursing and Health Professions 25 19%
Engineering 9 7%
Unspecified 2 2%
Biochemistry, Genetics and Molecular Biology 2 2%
Other 7 5%
Unknown 43 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2017.
All research outputs
#2,278,115
of 25,382,440 outputs
Outputs from Critical Care
#1,998
of 6,555 outputs
Outputs of similar age
#42,394
of 327,198 outputs
Outputs of similar age from Critical Care
#38
of 83 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,555 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,198 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 83 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.