↓ Skip to main content

Site-Specific Recombinases

Overview of attention for book
Cover of 'Site-Specific Recombinases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Generating Genetically Modified Mice: A Decision Guide
  3. Altmetric Badge
    Chapter 2 Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes
  4. Altmetric Badge
    Chapter 3 Building Cre Knockin Rat Lines Using CRISPR/Cas9
  5. Altmetric Badge
    Chapter 4 Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases
  6. Altmetric Badge
    Chapter 5 Use of the DICE (Dual Integrase Cassette Exchange) System
  7. Altmetric Badge
    Chapter 6 Ligand-Controlled Site-Specific Recombination in Zebrafish
  8. Altmetric Badge
    Chapter 7 Injection-Based Delivery of Cell-Permeable Peptide-Tagged Cre
  9. Altmetric Badge
    Chapter 8 Viral Delivery of GFP-Dependent Recombinases to the Mouse Brain
  10. Altmetric Badge
    Chapter 9 Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors
  11. Altmetric Badge
    Chapter 10 Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X
  12. Altmetric Badge
    Chapter 11 Nanoparticle-Mediated Recombinase Delivery into Maize
  13. Altmetric Badge
    Chapter 12 Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines
  14. Altmetric Badge
    Chapter 13 FLPing Genes On and Off in Drosophila
  15. Altmetric Badge
    Chapter 14 Imaging Neural Architecture in Brainbow Samples
  16. Altmetric Badge
    Chapter 15 Purification and In Vitro Characterization of Zinc Finger Recombinases
  17. Altmetric Badge
    Chapter 16 Preparing Mate-Paired Illumina Libraries Using Cre Recombinase
  18. Altmetric Badge
    Chapter 17 Preparing Fosmid Mate-Paired Libraries Using Cre-LoxP Recombination
  19. Altmetric Badge
    Chapter 18 Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways
  20. Altmetric Badge
    Chapter 19 Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family
  21. Altmetric Badge
    Chapter 20 Production of Minicircle DNA Vectors Using Site-Specific Recombinases
Attention for Chapter 4: Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases
Altmetric Badge

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases
Chapter number 4
Book title
Site-Specific Recombinases
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7169-5_4
Pubmed ID
Book ISBNs
978-1-4939-7167-1, 978-1-4939-7169-5
Authors

Eugenia Voziyanova, Rachelle P. Anderson, Yuri Voziyanov

Abstract

Recombinase-mediated cassette exchange, or RMCE, is a genome engineering tool that can be used to swap DNA fragments of interest between two DNA molecules. In a variation of RMCE, called dual RMCE, the exchange of DNA fragments is mediated by two recombinases in contrast to one recombinase in the classic RMCE reaction. Under optimal conditions, the efficiency of dual RMCE can be quite high: up to ~45% of the transfected cells depending on the recombinase pair used to mediate the replacement reaction. Here we describe protocols for preparing for, performing, and optimizing the parameters of dual RMCE.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 38%
Student > Ph. D. Student 1 13%
Student > Bachelor 1 13%
Student > Postgraduate 1 13%
Unknown 2 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 38%
Agricultural and Biological Sciences 2 25%
Unknown 3 38%