↓ Skip to main content

Site-Specific Recombinases

Overview of attention for book
Cover of 'Site-Specific Recombinases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Generating Genetically Modified Mice: A Decision Guide
  3. Altmetric Badge
    Chapter 2 Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes
  4. Altmetric Badge
    Chapter 3 Building Cre Knockin Rat Lines Using CRISPR/Cas9
  5. Altmetric Badge
    Chapter 4 Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases
  6. Altmetric Badge
    Chapter 5 Use of the DICE (Dual Integrase Cassette Exchange) System
  7. Altmetric Badge
    Chapter 6 Ligand-Controlled Site-Specific Recombination in Zebrafish
  8. Altmetric Badge
    Chapter 7 Injection-Based Delivery of Cell-Permeable Peptide-Tagged Cre
  9. Altmetric Badge
    Chapter 8 Viral Delivery of GFP-Dependent Recombinases to the Mouse Brain
  10. Altmetric Badge
    Chapter 9 Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors
  11. Altmetric Badge
    Chapter 10 Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X
  12. Altmetric Badge
    Chapter 11 Nanoparticle-Mediated Recombinase Delivery into Maize
  13. Altmetric Badge
    Chapter 12 Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines
  14. Altmetric Badge
    Chapter 13 FLPing Genes On and Off in Drosophila
  15. Altmetric Badge
    Chapter 14 Imaging Neural Architecture in Brainbow Samples
  16. Altmetric Badge
    Chapter 15 Purification and In Vitro Characterization of Zinc Finger Recombinases
  17. Altmetric Badge
    Chapter 16 Preparing Mate-Paired Illumina Libraries Using Cre Recombinase
  18. Altmetric Badge
    Chapter 17 Preparing Fosmid Mate-Paired Libraries Using Cre-LoxP Recombination
  19. Altmetric Badge
    Chapter 18 Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways
  20. Altmetric Badge
    Chapter 19 Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family
  21. Altmetric Badge
    Chapter 20 Production of Minicircle DNA Vectors Using Site-Specific Recombinases
Attention for Chapter 13: FLPing Genes On and Off in Drosophila
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

wikipedia
3 Wikipedia pages

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
34 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
FLPing Genes On and Off in Drosophila
Chapter number 13
Book title
Site-Specific Recombinases
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7169-5_13
Pubmed ID
Book ISBNs
978-1-4939-7167-1, 978-1-4939-7169-5
Authors

Bonnie M. Weasner, Jinjin Zhu, Justin P. Kumar, Weasner, Bonnie M., Zhu, Jinjin, Kumar, Justin P.

Abstract

The fruit fly, Drosophila melanogaster, has been a favorite experimental system of developmental biologists for more than a century. One of the most attractive features of this model system is the clarity by which one can analyze mutant phenotypes. Most genes are found in single copies, and loss-of-function mutants often have obvious phenotypes that can be analyzed during development and in adulthood. As with all metazoans, a significant fraction of Drosophila genes are used during both embryonic and postembryonic development, and null mutants often die during embryogenesis thereby precluding the analysis of postembryonic tissues. For several decades researchers worked around this problem by either studying gynandromorphs or irradiating chromosomes carrying mutations in the hope of inducing mitotic recombination which would then allow for the analysis of mutant phenotypes in smaller populations of cells. The former method suffers from the fact that mutations in the gene of interest are often lethal when generated in large sectors, which is a hallmark of gynandromorphs. Clonal induction with the latter method occurs at relatively low frequencies making this method laborious. The introduction of the yeast FRT System/FRT site-directed recombination system to Drosophila has made generating loss-of-function mosaic clones simple and easy. Over the years several variants of this method have allowed developmental biologists to remove genes, overexpress genes, and even express one gene in patches of cells that are mutant for a second gene. In this review we will briefly discuss some of various FRT System/FRT-based approaches that are being used to manipulate gene expression in Drosophila. The individual FRT System/FRT-based methods are described in the papers that are cited herein. We will outline the procedure that our lab uses to prepare and analyze mosaic clones in Drosophila eye-antennal imaginal discs.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 18%
Student > Ph. D. Student 6 18%
Student > Master 4 12%
Researcher 3 9%
Unspecified 2 6%
Other 2 6%
Unknown 11 32%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 44%
Neuroscience 4 12%
Unspecified 2 6%
Business, Management and Accounting 1 3%
Medicine and Dentistry 1 3%
Other 1 3%
Unknown 10 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 December 2022.
All research outputs
#7,671,701
of 23,351,247 outputs
Outputs from Methods in molecular biology
#2,382
of 13,337 outputs
Outputs of similar age
#142,547
of 423,052 outputs
Outputs of similar age from Methods in molecular biology
#245
of 1,075 outputs
Altmetric has tracked 23,351,247 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,337 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 75% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 423,052 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 1,075 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.