↓ Skip to main content

Site-Specific Recombinases

Overview of attention for book
Cover of 'Site-Specific Recombinases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Generating Genetically Modified Mice: A Decision Guide
  3. Altmetric Badge
    Chapter 2 Direct Generation of Conditional Alleles Using CRISPR/Cas9 in Mouse Zygotes
  4. Altmetric Badge
    Chapter 3 Building Cre Knockin Rat Lines Using CRISPR/Cas9
  5. Altmetric Badge
    Chapter 4 Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases
  6. Altmetric Badge
    Chapter 5 Use of the DICE (Dual Integrase Cassette Exchange) System
  7. Altmetric Badge
    Chapter 6 Ligand-Controlled Site-Specific Recombination in Zebrafish
  8. Altmetric Badge
    Chapter 7 Injection-Based Delivery of Cell-Permeable Peptide-Tagged Cre
  9. Altmetric Badge
    Chapter 8 Viral Delivery of GFP-Dependent Recombinases to the Mouse Brain
  10. Altmetric Badge
    Chapter 9 Recombinase-Mediated Cassette Exchange Using Adenoviral Vectors
  11. Altmetric Badge
    Chapter 10 Marker Removal in Transgenic Plants Using Cre Recombinase Delivered with Potato Virus X
  12. Altmetric Badge
    Chapter 11 Nanoparticle-Mediated Recombinase Delivery into Maize
  13. Altmetric Badge
    Chapter 12 Immunohistochemical Procedures for Characterizing the Retinal Expression Patterns of Cre Driver Mouse Lines
  14. Altmetric Badge
    Chapter 13 FLPing Genes On and Off in Drosophila
  15. Altmetric Badge
    Chapter 14 Imaging Neural Architecture in Brainbow Samples
  16. Altmetric Badge
    Chapter 15 Purification and In Vitro Characterization of Zinc Finger Recombinases
  17. Altmetric Badge
    Chapter 16 Preparing Mate-Paired Illumina Libraries Using Cre Recombinase
  18. Altmetric Badge
    Chapter 17 Preparing Fosmid Mate-Paired Libraries Using Cre-LoxP Recombination
  19. Altmetric Badge
    Chapter 18 Using Purified Tyrosine Site-Specific Recombinases In Vitro to Rapidly Construct and Diversify Metabolic Pathways
  20. Altmetric Badge
    Chapter 19 Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family
  21. Altmetric Badge
    Chapter 20 Production of Minicircle DNA Vectors Using Site-Specific Recombinases
Attention for Chapter 19: Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Multipart DNA Assembly Using Site-Specific Recombinases from the Large Serine Integrase Family
Chapter number 19
Book title
Site-Specific Recombinases
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7169-5_19
Pubmed ID
Book ISBNs
978-1-4939-7167-1, 978-1-4939-7169-5
Authors

Femi J. Olorunniji, Christine Merrick, Susan J. Rosser, Margaret C. M. Smith, W. Marshall Stark, Sean D. Colloms, Olorunniji, Femi J., Merrick, Christine, Rosser, Susan J., Smith, Margaret C. M., Stark, W. Marshall, Colloms, Sean D.

Abstract

Assembling multiple DNA fragments into functional plasmids is an important and often rate-limiting step in engineering new functions in living systems. Bacteriophage integrases are enzymes that carry out efficient recombination reactions between short, defined DNA sequences known as att sites. These DNA splicing reactions can be used to assemble large numbers of DNA fragments into a functional circular plasmid in a method termed serine integrase recombinational assembly (SIRA). The resulting DNA assemblies can easily be modified by further recombination reactions catalyzed by the same integrase in the presence of its recombination directionality factor (RDF). Here we present a set of protocols for the overexpression and purification of bacteriophage ϕC31 and Bxb1 integrase and RDF proteins, their use in DNA assembly reactions, and subsequent modification of the resulting DNA assemblies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 22%
Student > Ph. D. Student 3 17%
Other 2 11%
Student > Postgraduate 2 11%
Student > Master 2 11%
Other 2 11%
Unknown 3 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 39%
Agricultural and Biological Sciences 4 22%
Chemical Engineering 1 6%
Computer Science 1 6%
Physics and Astronomy 1 6%
Other 1 6%
Unknown 3 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 April 2018.
All research outputs
#15,098,445
of 23,237,082 outputs
Outputs from Methods in molecular biology
#4,803
of 13,317 outputs
Outputs of similar age
#244,379
of 422,228 outputs
Outputs of similar age from Methods in molecular biology
#417
of 1,075 outputs
Altmetric has tracked 23,237,082 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,317 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 422,228 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,075 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.