Title |
RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma
|
---|---|
Published in |
BMC Cancer, August 2017
|
DOI | 10.1186/s12885-017-3539-3 |
Pubmed ID | |
Authors |
Dennis C. Harrer, Bianca Simon, Shin-ichiro Fujii, Kanako Shimizu, Ugur Uslu, Gerold Schuler, Kerstin F. Gerer, Stefanie Hoyer, Jan Dörrie, Niels Schaft |
Abstract |
Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA. PBMC from healthy donors were stimulated using zoledronic-acid or OKT3 to expand γ/δ T cells and bulk T cells, respectively. Additionally, CD8(+) T cells and γ/δ T cells were MACS-isolated from PBMC and expanded with OKT3. Next, these four populations were electroporated with RNA encoding a gp100/HLA-A2-specific TCR or a CAR specific for MCSP. Thereafter, receptor expression, antigen-specific cytokine secretion, specific cytotoxicity, and killing of the endogenous γ/δ T cell-target Daudi were analyzed. Using zoledronic-acid in average 6 million of γ/δ T cells with a purity of 85% were generated from one million PBMC. MACS-isolation and OKT3-mediated expansion of γ/δ T cells yielded approximately ten times less cells. OKT3-expanded and CD8(+) MACS-isolated conventional T cells behaved correspondingly similar. All employed T cells were efficiently transfected with the TCR or the CAR. Upon respective stimulation, γ/δ T cells produced IFNγ and TNF, but little IL-2 and the zoledronic-acid expanded T cells exceeded MACS-γ/δ T cells in antigen-specific cytokine secretion. While the cytokine production of γ/δ T cells was in general lower than that of conventional T cells, specific cytotoxicity against melanoma cell lines was similar. In contrast to OKT3-expanded and MACS-CD8(+) T cells, mock-electroporated γ/δ T cells also lysed tumor cells reflecting the γ/δ T cell-intrinsic anti-tumor activity. After transfection, γ/δ T cells were still able to kill MHC-deficient Daudi cells. We present a protocol adaptable to GMP for the expansion of γ/δ T cells and their subsequent RNA-transfection with tumor-specific TCRs or CARs. Given the transient receptor expression, the reduced cytokine release, and the equivalent cytotoxicity, these γ/δ T cells may represent a safer complementation to genetically engineered conventional T cells in the immunotherapy of melanoma (Exper Dermatol 26: 157, 2017, J Investig Dermatol 136: A173, 2016). |
Twitter Demographics
Geographical breakdown
Country | Count | As % |
---|---|---|
United States | 1 | 100% |
Demographic breakdown
Type | Count | As % |
---|---|---|
Members of the public | 1 | 100% |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 89 | 100% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Researcher | 20 | 22% |
Student > Master | 14 | 16% |
Student > Ph. D. Student | 13 | 15% |
Student > Bachelor | 12 | 13% |
Student > Doctoral Student | 8 | 9% |
Other | 8 | 9% |
Unknown | 14 | 16% |
Readers by discipline | Count | As % |
---|---|---|
Immunology and Microbiology | 21 | 24% |
Biochemistry, Genetics and Molecular Biology | 20 | 22% |
Agricultural and Biological Sciences | 14 | 16% |
Medicine and Dentistry | 9 | 10% |
Engineering | 2 | 2% |
Other | 5 | 6% |
Unknown | 18 | 20% |