↓ Skip to main content

Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia

Overview of attention for article published in Frontiers in Public Health, August 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Readers on

mendeley
66 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Prevalence of Genotypes That Determine Resistance of Staphylococci to Macrolides and Lincosamides in Serbia
Published in
Frontiers in Public Health, August 2017
DOI 10.3389/fpubh.2017.00200
Pubmed ID
Authors

Milena Mišić, Jelena Čukić, Dejan Vidanović, Milanko Šekler, Sanja Matić, Mihailo Vukašinović, Dejan Baskić

Abstract

Macrolides, lincosamides, and streptogramins (MLS) resistance genes are responsible for resistance to these antibiotics in Staphylococcus infections. The purpose of the study was to analyze the distribution of the MLS resistance genes in community- and hospital-acquired Staphylococcus isolates. The MLS resistance phenotypes [constitutive resistance to macrolide-lincosamide-streptogramin B (cMLSb), inducible resistance to macrolide-lincosamide-streptogramin B (iMLSb), resistance to macrolide/macrolide-streptogramin B (M/MSb), and resistance to lincosamide-streptogramin A/streptogramin B (LSa/b)] were determined by double-disc diffusion method. The presence of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) were determined by end-point polymerase chain reaction in 179 isolates of staphylococci collected during 1-year period at the Center for Microbiology of Public Health Institute in Vranje. The most frequent MLS phenotype among staphylococcal isolates, both community-acquired and hospital-acquired, was iMLSb (33.4%). The second most frequent was M/MSb (17.6%) with statistically significantly higher number of hospital-acquired staphylococcal isolates (p < 0.05). MLS resistance was mostly determined by the presence of msrA/B (35.0%) and ermC (20.8%) genes. Examined phenotypes were mostly determined by the presence of one gene, especially by msrA/B (26.3%) and ermC (14.5%), but 15.6% was determined by a combination of two or more genes. M/MSb phenotype was the most frequently encoded by msrA/B (95.6%) gene, LSa/b phenotype by lnuA (56.3%) gene, and iMLSb phenotype by ermC (29.4%) and ermA (25.5%) genes. Although cMLSb phenotype was mostly determined by the presence of ermC (28.9%), combinations of two or more genes have been present too. This pattern was particularly recorded in methicillin-resistant Staphylococcus aureus (MRSA) (58.3%) and methicillin-resistant coagulase-negative staphylococci (MRCNS) (90.9%) isolates with cMLSB phenotype. The msrA/B gene and M/MSb phenotype were statistically significantly higher in hospital-acquired than community-acquired staphylococci strains (p < 0.05). There are no statistically significant differences between staphylococci harboring the rest of MLS resistance genes acquired in community and hospital settings (p > 0.05). The prevalence of iMLSb phenotypes may change over time, so it is necessary to perform periodic survey of MLS resistance phenotypes, particularly where the D-test is not performed routinely.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 66 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 66 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 15%
Student > Master 7 11%
Researcher 7 11%
Student > Doctoral Student 6 9%
Student > Postgraduate 5 8%
Other 12 18%
Unknown 19 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 21%
Immunology and Microbiology 12 18%
Medicine and Dentistry 8 12%
Veterinary Science and Veterinary Medicine 3 5%
Agricultural and Biological Sciences 3 5%
Other 4 6%
Unknown 22 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2017.
All research outputs
#14,952,935
of 22,999,744 outputs
Outputs from Frontiers in Public Health
#4,084
of 10,218 outputs
Outputs of similar age
#187,301
of 316,382 outputs
Outputs of similar age from Frontiers in Public Health
#60
of 100 outputs
Altmetric has tracked 22,999,744 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,218 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 10.0. This one has gotten more attention than average, scoring higher than 55% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,382 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.