↓ Skip to main content

PM2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B

Overview of attention for article published in Military Medical Research, August 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PM2.5 obtained from urban areas in Beijing induces apoptosis by activating nuclear factor-kappa B
Published in
Military Medical Research, August 2017
DOI 10.1186/s40779-017-0136-3
Pubmed ID
Authors

Hui Peng, Xiao-Hong Zhao, Ting-Ting Bi, Xiao-Yan Yuan, Jia-Bin Guo, Shuang-Qing Peng

Abstract

Particulate matter (PM), which has adverse effects on citizen health, is a major air pollutant in Beijing city. PM2.5 is an indicator of PM in urban areas and can cause serious damage to human health. Many epidemiological studies have shown that nuclear factor-kappa B (NF-κB) is involved in PM2.5-induced cell injury, but the exact mechanisms are not well understood. The cytotoxic effects of PM2.5 at 25-1600 μg/ml for 24 h were determined by MTT assay in Chinese hamster ovary cells (CHO) cells. Flow cytometry was used to determine the apoptosis rate induced by PM2.5. The destabilized enhanced green fluorescent protein (d2EGFP) green fluorescent protein reporter system was used to determine the NF-κB activity induced by PM2.5. The expression of pro-apoptotic Bcl-2-associated death promoter (BAD) proteins induced by PM2.5 was determined by western blotting to explore the relationship between PM2.5 and the NF-κB signaling pathway and to determine the toxicological mechanisms of PM2.5. PM2.5 collected in Beijing urban districts induces cytotoxic effects in CHO cells according to MTT assay with 72.28% cell viability rates even at 200 μg/ml PM2.5 and flow cytometry assays with 26.97% apoptosis rates at 200 μg/ml PM2.5. PM2.5 increases the activation levels of NF-κB, which have maintained for 24 h. 200 μg/ml PM2.5 cause activation of NF-κB after exposure for 4 h, the activation peak appears after 13.5 h with a peak value of 25.41%. The average percentage of NF-κB activation in whole 24 h is up to 12.9% by 200 μg/ml PM2.5. In addition, PM2.5 decreases the expression level of the pro-apoptotic protein BAD in a concentration-dependent manner. PM2.5 induces NF-κB activation, which persists for 24 h. The expression of pro-apoptotic protein BAD decreased with increased concentrations of PM2.5. These findings suggest that PM2.5 plays a major role in apoptosis by activating the NF-κB signaling pathway and reducing BAD protein expression.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 25%
Student > Bachelor 4 14%
Researcher 4 14%
Professor 1 4%
Other 1 4%
Other 0 0%
Unknown 11 39%
Readers by discipline Count As %
Environmental Science 3 11%
Pharmacology, Toxicology and Pharmaceutical Science 3 11%
Nursing and Health Professions 2 7%
Agricultural and Biological Sciences 2 7%
Biochemistry, Genetics and Molecular Biology 1 4%
Other 5 18%
Unknown 12 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 September 2017.
All research outputs
#17,292,294
of 25,382,440 outputs
Outputs from Military Medical Research
#276
of 443 outputs
Outputs of similar age
#207,624
of 323,945 outputs
Outputs of similar age from Military Medical Research
#5
of 8 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 443 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.9. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,945 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 8 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.