↓ Skip to main content

Histamine and Histamine Receptors in Health and Disease

Overview of attention for book
Cover of 'Histamine and Histamine Receptors in Health and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 8 Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia
  3. Altmetric Badge
    Chapter 9 Histamine and Histamine Receptors in Allergic Dermatitis
  4. Altmetric Badge
    Chapter 10 Structural Analysis of the Histamine H1 Receptor
  5. Altmetric Badge
    Chapter 11 Role of the Histamine H4-Receptor in Bronchial Asthma
  6. Altmetric Badge
    Chapter 12 Role of the Histamine H3 Receptor in the Central Nervous System
  7. Altmetric Badge
    Chapter 13 Histamine Clearance Through Polyspecific Transporters in the Brain
  8. Altmetric Badge
    Chapter 14 Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines
  9. Altmetric Badge
    Chapter 15 Regulation of the Cardiovascular System by Histamine
  10. Altmetric Badge
    Chapter 18 Histamine Release from Mast Cells and Basophils
  11. Altmetric Badge
    Chapter 22 Analytical Methods for the Quantification of Histamine and Histamine Metabolites
  12. Altmetric Badge
    Chapter 54 Histamine Food Poisoning.
  13. Altmetric Badge
    Chapter 85 Allergy, Histamine and Antihistamines
  14. Altmetric Badge
    Chapter 113 Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands
  15. Altmetric Badge
    Chapter 124 Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System
  16. Altmetric Badge
    Chapter 125 Changes in Histidine Decarboxylase, Histamine N-Methyltransferase and Histamine Receptors in Neuropsychiatric Disorders
  17. Altmetric Badge
    Chapter 127 Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions
  18. Altmetric Badge
    Chapter 130 Clinical Development of Histamine H4 Receptor Antagonists
Attention for Chapter 12: Role of the Histamine H3 Receptor in the Central Nervous System
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Role of the Histamine H3 Receptor in the Central Nervous System
Chapter number 12
Book title
Histamine and Histamine Receptors in Health and Disease
Published in
Handbook of experimental pharmacology, January 2016
DOI 10.1007/164_2016_12
Pubmed ID
Book ISBNs
978-3-31-958192-7, 978-3-31-958194-1
Authors

Eberhard Schlicker, Markus Kathmann, Schlicker, Eberhard, Kathmann, Markus

Abstract

The Gi/o protein-coupled histamine H3 receptor is distributed throughout the central nervous system including areas like cerebral cortex, hippocampus and striatum with the density being highest in the posterior hypothalamus, i.e. the area in which the histaminergic cell bodies are located. In contrast to the other histamine receptor subtypes (H1, H2 and H4), the H3 receptor is located presynaptically and shows a constitutive activity. In detail, H3 receptors are involved in the inhibition of histamine release (presynaptic autoreceptor), impulse flow along the histaminergic neurones (somadendritic autoreceptor) and histamine synthesis. Moreover, they occur as inhibitory presynaptic heteroreceptors on serotoninergic, noradrenergic, dopaminergic, glutamatergic, GABAergic and perhaps cholinergic neurones. This review shows for four functions of the brain that the H3 receptor represents a brake against the wake-promoting, anticonvulsant and anorectic effect of histamine (via postsynaptic H1 receptors) and its procognitive activity (via postsynaptic H1 and H2 receptors). Indeed, H1 agonists and H3 inverse agonists elicit essentially the same effects, at least in rodents; these effects are opposite in direction to those elicited by brain-penetrating H1 receptor antagonists in humans. Although the benefit for H3 inverse agonists for the symptomatic treatment of dementias is inconclusive, several members of this group have shown a marked potential for the treatment of disorders associated with excessive daytime sleepiness. In March 2016, the European Commission granted a marketing authorisation for pitolisant (Wakix(R)) (as the first representative of the H3 inverse agonists) for the treatment of narcolepsy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 17%
Student > Master 10 17%
Researcher 10 17%
Other 4 7%
Student > Ph. D. Student 4 7%
Other 6 10%
Unknown 16 27%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 15 25%
Neuroscience 8 13%
Agricultural and Biological Sciences 5 8%
Unspecified 3 5%
Nursing and Health Professions 2 3%
Other 8 13%
Unknown 19 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 September 2022.
All research outputs
#13,795,262
of 23,381,576 outputs
Outputs from Handbook of experimental pharmacology
#334
of 650 outputs
Outputs of similar age
#193,073
of 396,396 outputs
Outputs of similar age from Handbook of experimental pharmacology
#37
of 55 outputs
Altmetric has tracked 23,381,576 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 650 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.5. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 396,396 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 55 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.