↓ Skip to main content

Histamine and Histamine Receptors in Health and Disease

Overview of attention for book
Cover of 'Histamine and Histamine Receptors in Health and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 8 Histamine H2 Receptor in Blood Cells: A Suitable Target for the Treatment of Acute Myeloid Leukemia
  3. Altmetric Badge
    Chapter 9 Histamine and Histamine Receptors in Allergic Dermatitis
  4. Altmetric Badge
    Chapter 10 Structural Analysis of the Histamine H1 Receptor
  5. Altmetric Badge
    Chapter 11 Role of the Histamine H4-Receptor in Bronchial Asthma
  6. Altmetric Badge
    Chapter 12 Role of the Histamine H3 Receptor in the Central Nervous System
  7. Altmetric Badge
    Chapter 13 Histamine Clearance Through Polyspecific Transporters in the Brain
  8. Altmetric Badge
    Chapter 14 Histamine H1 Receptor Gene Expression and Drug Action of Antihistamines
  9. Altmetric Badge
    Chapter 15 Regulation of the Cardiovascular System by Histamine
  10. Altmetric Badge
    Chapter 18 Histamine Release from Mast Cells and Basophils
  11. Altmetric Badge
    Chapter 22 Analytical Methods for the Quantification of Histamine and Histamine Metabolites
  12. Altmetric Badge
    Chapter 54 Histamine Food Poisoning.
  13. Altmetric Badge
    Chapter 85 Allergy, Histamine and Antihistamines
  14. Altmetric Badge
    Chapter 113 Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands
  15. Altmetric Badge
    Chapter 124 Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutantsin the Sf9 Cell Expression System
  16. Altmetric Badge
    Chapter 125 Changes in Histidine Decarboxylase, Histamine N-Methyltransferase and Histamine Receptors in Neuropsychiatric Disorders
  17. Altmetric Badge
    Chapter 127 Histidine Decarboxylase Knockout Mice as a Model of the Pathophysiology of Tourette Syndrome and Related Conditions
  18. Altmetric Badge
    Chapter 130 Clinical Development of Histamine H4 Receptor Antagonists
Attention for Chapter 13: Histamine Clearance Through Polyspecific Transporters in the Brain
Altmetric Badge

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Histamine Clearance Through Polyspecific Transporters in the Brain
Chapter number 13
Book title
Histamine and Histamine Receptors in Health and Disease
Published in
Handbook of experimental pharmacology, January 2016
DOI 10.1007/164_2016_13
Pubmed ID
Book ISBNs
978-3-31-958192-7, 978-3-31-958194-1
Authors

Takeo Yoshikawa, Kazuhiko Yanai, Yoshikawa, Takeo, Yanai, Kazuhiko

Abstract

Histamine plays an important role as a neurotransmitter in diverse brain functions, and clearance of histamine is essential to avoid excessive histaminergic neuronal activity. Histamine N-methyltransferase, which is an enzyme in the central nervous system that metabolizes histamine, is localized to the cytosol. This suggests that a histamine transport process is essential to inactivate histamine. Previous reports have shown the importance of astrocytes for histamine transport, although neuronal histamine transport could not be ruled out. High-affinity and selective histamine transporters have not yet been discovered, although it has been reported that the following three polyspecific transporters transport histamine: organic cation transporter (OCT) 2, OCT3, and plasma membrane monoamine transporter (PMAT). The K m values of human OCT2, OCT3, and PMAT are 0.54, 0.64, and 4.4 mM, respectively. The three transporters are expressed in the brain, and their regional distribution is different. Recent studies revealed the contribution of OCT3 and PMAT to histamine transport by primary human astrocytes. Several investigations using mice supported the importance of OCT3 for histamine clearance in the brain. However, further studies are required to elucidate the detailed mechanism of histamine transport in the brain.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 27%
Student > Ph. D. Student 2 13%
Researcher 2 13%
Professor 1 7%
Unknown 6 40%
Readers by discipline Count As %
Neuroscience 3 20%
Pharmacology, Toxicology and Pharmaceutical Science 2 13%
Nursing and Health Professions 1 7%
Biochemistry, Genetics and Molecular Biology 1 7%
Medicine and Dentistry 1 7%
Other 1 7%
Unknown 6 40%