↓ Skip to main content

SPEN, a new player in primary cilia formation and cell migration in breast cancer

Overview of attention for article published in Breast Cancer Research, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
SPEN, a new player in primary cilia formation and cell migration in breast cancer
Published in
Breast Cancer Research, September 2017
DOI 10.1186/s13058-017-0897-3
Pubmed ID
Authors

Stéphanie Légaré, Catherine Chabot, Mark Basik

Abstract

The primary cilium is a microtubule-based and nonmotile organelle functioning as a cellular antenna that is involved in the regulation of cell proliferation, differentiation, and migration. In breast cancer cells, the primary cilium is a structure that decreases in incidence with increasing degrees of transformation and may be biologically more important in estrogen receptor (ERα)-negative breast cancer cells. Split ends (SPEN) is an ERα corepressor that we have identified as a tumor suppressor protein in ERα-positive breast cancer cells whose hormone-independent roles in breast cancer have never been explored. We determined the hormone-independent transcriptional program regulated by the ERα cofactor SPEN in breast cancer using DNA microarrays. The biological functions regulated by SPEN independently of hormones were studied in vitro in ERα-positive and ERα-negative breast cancer cells. Finally, we examined the clinical relevance of SPEN expression in cohorts of breast cancer samples with outcome data. We found that SPEN is coexpressed with a number of genes involved in ciliary biology, including the ciliogenic transcription factor RFX3, in a hormone-independent manner. SPEN reexpression in T47D cells containing a nonsense mutation in SPEN restored the primary cilium, whereas its knockdown in MCF10A and Hs578T cells considerably decreased primary cilia levels. We also report that SPEN regulates migration in breast cells, but only in those harboring primary cilia, and that KIF3A silencing, a critical factor in primary cilia, partially reverses SPEN's effects, suggesting that SPEN may coordinate cellular movement through primary cilia-dependent mechanisms. Finally, we found that high SPEN RNA levels were predictive of early metastasis in two independent cohorts of 77 (HR 2.25, P = 0.03) and 170 (HR = 2.23, P = 0.004) patients with ERα-negative breast cancer. Together, our data demonstrate a role for SPEN in the regulation of primary cilia formation and cell migration in breast cancer cells, which may collectively explain why its expression is associated with time to metastasis in cohorts of patients with ERα-negative breast cancers.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 19%
Student > Master 8 17%
Researcher 8 17%
Student > Bachelor 4 9%
Student > Doctoral Student 2 4%
Other 3 6%
Unknown 13 28%
Readers by discipline Count As %
Medicine and Dentistry 12 26%
Biochemistry, Genetics and Molecular Biology 9 19%
Agricultural and Biological Sciences 7 15%
Immunology and Microbiology 2 4%
Neuroscience 2 4%
Other 0 0%
Unknown 15 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2017.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Breast Cancer Research
#1,708
of 2,054 outputs
Outputs of similar age
#250,723
of 323,170 outputs
Outputs of similar age from Breast Cancer Research
#23
of 26 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,054 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.2. This one is in the 8th percentile – i.e., 8% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,170 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 3rd percentile – i.e., 3% of its contemporaries scored the same or lower than it.