↓ Skip to main content

Plant Respiration and Internal Oxygen

Overview of attention for book
Cover of 'Plant Respiration and Internal Oxygen'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Assessing Metabolic Flux in Plants with Radiorespirometry
  3. Altmetric Badge
    Chapter 2 Coupling Radiotracer Experiments with Chemical Fractionation for the Estimation of Respiratory Fluxes
  4. Altmetric Badge
    Chapter 3 A Method for Imaging Oxygen Distribution and Respiration at a Microscopic Level of Resolution
  5. Altmetric Badge
    Chapter 4 VisiSens Technique to Measure Internal Oxygen and Respiration in Barley Roots
  6. Altmetric Badge
    Chapter 5 MultiSense: A Multimodal Sensor Tool Enabling the High-Throughput Analysis of Respiration
  7. Altmetric Badge
    Chapter 6 Measurement of Respiration and Internal Oxygen in Germinating Cicer arietinum L. Seeds Using Optic Microsensor
  8. Altmetric Badge
    Chapter 7 Using an Oxygen Microsensor to Measure Oxygen Dynamics in Tomato Plants in Response to Pseudomonas syringae Infection
  9. Altmetric Badge
    Chapter 8 Measurement of Oxygen Status in Arabidopsis Leaves Undergoing the Hypersensitive Response During Pseudomonas Infection
  10. Altmetric Badge
    Chapter 9 Isolation of Physiologically Active and Intact Mitochondria from Chickpea
  11. Altmetric Badge
    Chapter 10 Isolation and Structural Studies of Mitochondria from Pea Roots
  12. Altmetric Badge
    Chapter 11 Mitochondrial Respiration and Oxygen Tension
  13. Altmetric Badge
    Chapter 12 Isolation of Mitochondria from Model and Crop Plants
  14. Altmetric Badge
    Chapter 13 Procedures of Mitochondria Purification and Gene Expression to Study Alternative Respiratory and Uncoupling Pathways in Fruits
  15. Altmetric Badge
    Chapter 14 Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants
  16. Altmetric Badge
    Chapter 15 Respiration Traits as Novel Markers for Plant Robustness Under the Threat of Climate Change: A Protocol for Validation
  17. Altmetric Badge
    Chapter 16 Calorespirometry: A Novel Tool in Functional Hologenomics to Select “Green” Holobionts for Biomass Production
  18. Altmetric Badge
    Chapter 17 Measurements of Electron Partitioning Between Cytochrome and Alternative Oxidase Pathways in Plant Tissues
  19. Altmetric Badge
    Chapter 18 A Driving Bioinformatics Approach to Explore Co-regulation of AOX Gene Family Members During Growth and Development
  20. Altmetric Badge
    Chapter 19 A Step-by-Step Protocol for Classifying AOX Proteins in Flowering Plants
  21. Altmetric Badge
    Chapter 20 Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach
  22. Altmetric Badge
    Chapter 21 Laser Capture Microdissection for Amplification of Alternative Oxidase (AOX) Genes in Target Tissues in Daucus carota L.
  23. Altmetric Badge
    Chapter 22 Measurement of Mitochondrial Respiration in Isolated Protoplasts: Cytochrome and Alternative Pathways
  24. Altmetric Badge
    Chapter 23 Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode
Attention for Chapter 20: Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Studying Individual Plant AOX Gene Functionality in Early Growth Regulation: A New Approach
Chapter number 20
Book title
Plant Respiration and Internal Oxygen
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7292-0_20
Pubmed ID
Book ISBNs
978-1-4939-7291-3, 978-1-4939-7292-0
Authors

Birgit Arnholdt-Schmitt, Vinod Kumar Patil

Abstract

AOX1 and AOX2 genes are thought to play different physiological roles. Whereas AOX1 is typically expected to associate to stress and growth responses, AOX2 was more often found to be linked to development and housekeeping functions. However, this view is questioned by several adverse observations. For example, co-regulated expression for DcAOX1 and DcAOX2a genes was recently reported during growth induction in carrot (Daucus carota L.). Early expression peaks for both genes during the lag phase of growth coincided with a critical time point for biomass prediction, a result achieved by applying calorespirometry. The effect of both AOX family member genes cannot easily be separated. However, separate functional analysis is required in order to identify important gene-specific polymorphisms or patterns of polymorphisms for functional marker development and its use in breeding. Specifically, a methodology is missing that enables studying functional effects of individual genes or polymorphisms/polymorphic patterns on early growth regulation.This protocol aims to provide the means for identifying plant alternative oxidase (AOX) gene variants as functional markers for early growth regulation. Prerequisite for applying this protocol is available Schizosaccharomyces pombe strains that were transformed with individual AOX genes following published protocols from Anthony Moore's group (Albury et al., J Biol Chem 271:17062-17066, 1996; Affourtit et al., J Biol Chem 274:6212-6218, 1999). The novelty of the present protocol comes by modifying yeast cell densities in a way that allows studying critical qualitative and quantitative effects of AOX gene variants (isoenzymes or polymorphic genes) during the early phase of growth. Calorimetry is used as a novel tool to confirm differences obtained by optical density measurements in early growth regulation by metabolic phenotyping (released heat rates). This protocol enables discriminating between AOX genes that inhibit growth and AOX genes that enhance growth under comparable conditions. It also allows studying dependency of AOX gene effects on gene copy number. The protocol can also be combined with laser microdissection of individual cells from target tissues for specified breeding traits.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 29%
Researcher 1 14%
Professor 1 14%
Unknown 3 43%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 43%
Psychology 1 14%
Unknown 3 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 September 2017.
All research outputs
#17,914,959
of 23,001,641 outputs
Outputs from Methods in molecular biology
#7,278
of 13,154 outputs
Outputs of similar age
#294,379
of 421,214 outputs
Outputs of similar age from Methods in molecular biology
#641
of 1,074 outputs
Altmetric has tracked 23,001,641 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,154 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 421,214 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.