↓ Skip to main content

Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells

Overview of attention for article published in Biomaterials, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
71 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells
Published in
Biomaterials, November 2017
DOI 10.1016/j.biomaterials.2017.08.040
Pubmed ID
Authors

Sergej Tomić, Kristina Janjetović, Dušan Mihajlović, Marina Milenković, Tamara Kravić-Stevović, Zoran Marković, Biljana Todorović-Marković, Zdenko Spitalsky, Matej Micusik, Dragana Vučević, Miodrag Čolić, Vladimir Trajković

Abstract

Graphene quantum dots (GQD) are atom-thick nanodimensional carbon sheets with excellent physico-chemical and biological properties, making them attractive for application in theranostics. However, their immunoregulatory properties are insufficiently investigated, especially in human primary immune cells. We found that non-toxic doses of GQD inhibit the production of proinflammatory and T helper (Th)1 cytokines, and augment the production of anti-inflammatory and Th2 cytokines by human peripheral blood mononuclear cells. While unable to affect T cells directly, GQD impaired the differentiation and functions of monocyte-derived dendritic cells (DC), lowering their capacity to stimulate T cell proliferation, development of Th1 and Th17 cells, and T-cell mediated cytotoxicity. Additionally, GQD-treated DC potentiated Th2 polarization, and induced suppressive CD4(+)CD25(high)Foxp3(+) regulatory T cells. After internalization in a dynamin-independent, cholesterol-dependent manner, GQD lowered the production of reactive oxygen species and nuclear translocation of NF-κB in DC. The activity of mammalian target of rapamycin (mTOR) was reduced by GQD, which correlated with the increase in transcription of autophagy genes and autophagic flux in DC. Genetic suppression of autophagy impaired the pro-tolerogenic effects of GQD on DC. Our results suggest that GQD-triggered autophagy promotes tolerogenic functions in monocyte-derived DC, which could be beneficial in inflammatory T-cell mediated pathologies, but also harmful in GQD-based anti-cancer therapy.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 11 20%
Student > Ph. D. Student 7 13%
Professor 3 5%
Student > Bachelor 2 4%
Student > Doctoral Student 2 4%
Other 7 13%
Unknown 23 42%
Readers by discipline Count As %
Immunology and Microbiology 5 9%
Biochemistry, Genetics and Molecular Biology 5 9%
Chemistry 4 7%
Medicine and Dentistry 4 7%
Materials Science 3 5%
Other 8 15%
Unknown 26 47%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 December 2021.
All research outputs
#13,421,140
of 22,780,165 outputs
Outputs from Biomaterials
#8,146
of 10,290 outputs
Outputs of similar age
#165,173
of 328,261 outputs
Outputs of similar age from Biomaterials
#49
of 146 outputs
Altmetric has tracked 22,780,165 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,290 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.7. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,261 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 146 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.