↓ Skip to main content

Catalytic Asymmetric Formal [3+2] Cycloaddition of 2-Isocyanatomalonate Esters and Unsaturated Imines: Synthesis of Highly Substituted Chiral γ-Lactams

Overview of attention for article published in Chemistry - A European Journal, September 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
4 tweeters

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Catalytic Asymmetric Formal [3+2] Cycloaddition of 2-Isocyanatomalonate Esters and Unsaturated Imines: Synthesis of Highly Substituted Chiral γ-Lactams
Published in
Chemistry - A European Journal, September 2017
DOI 10.1002/chem.201702777
Pubmed ID
Authors

Miguel Espinosa, Gonzalo Blay, Luz Cardona, M. Carmen Muñoz, José R. Pedro

Abstract

Unlike their isocyano and isothiocyanato analogues, isocyanato esters remain almost unexplored as formal 1,3-dipoles in asymmetric catalytic reactions. In this communication, the first asymmetric formal [3+2] cycloaddition involving isocyanato esters and electrophilic alkenes is reported. Diisopropyl 2-isocyanatomalonate reacts with α,β-unsaturated N-(o-anisidyl) imines in the presence of a Mg(OTf)2-BOX complex to give highly substituted chiral pyrrolidinones featuring a conjugate exocyclic double bond with excellent yields and enantiomeric excesses up to 99%. Several transformations of the resulting heterocycles, including the synthesis of a pyroglutamic acid derivative have been carried out.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Professor 2 40%
Student > Ph. D. Student 2 40%
Student > Master 1 20%
Readers by discipline Count As %
Chemistry 3 60%
Computer Science 1 20%
Unknown 1 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2020.
All research outputs
#10,098,447
of 17,520,458 outputs
Outputs from Chemistry - A European Journal
#8,234
of 17,858 outputs
Outputs of similar age
#135,687
of 283,424 outputs
Outputs of similar age from Chemistry - A European Journal
#203
of 645 outputs
Altmetric has tracked 17,520,458 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 17,858 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 53% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,424 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.
We're also able to compare this research output to 645 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.