↓ Skip to main content

Super-Resolution Microscopy

Overview of attention for book
Cover of 'Super-Resolution Microscopy'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics
  3. Altmetric Badge
    Chapter 2 Managing the Introduction of Super-Resolution Microscopy into a Core Facility
  4. Altmetric Badge
    Chapter 3 Live-Cell STED Imaging with the HyPer2 Biosensor
  5. Altmetric Badge
    Chapter 4 Diffraction-Unlimited Fluorescence Imaging with an EasySTED Retrofitted Confocal Microscope
  6. Altmetric Badge
    Chapter 5 Two-Photon STED Microscopy for Nanoscale Imaging of Neural Morphology In Vivo
  7. Altmetric Badge
    Chapter 6 STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells
  8. Altmetric Badge
    Chapter 7 Four-Channel Super-Resolution Imaging by 3-D Structured Illumination
  9. Altmetric Badge
    Chapter 8 Correlative SIM-STORM Microscopy
  10. Altmetric Badge
    Chapter 9 Correlative Super-Resolution Fluorescence Imaging and Atomic Force Microscopy for the Characterization of Biological Samples
  11. Altmetric Badge
    Chapter 10 Quantitative Single-Molecule Localization Microscopy (qSMLM) of Membrane Proteins Based on Kinetic Analysis of Fluorophore Blinking Cycles
  12. Altmetric Badge
    Chapter 11 Two-Color Single-Molecule Tracking in Live Cells
  13. Altmetric Badge
    Chapter 12 Fully Automated Targeted Confocal and Single-Molecule Localization Microscopy
  14. Altmetric Badge
    Chapter 13 Brain Slice Staining and Preparation for Three-Dimensional Super-Resolution Microscopy
  15. Altmetric Badge
    Chapter 14 Correlative In-Resin Super-Resolution Fluorescence and Electron Microscopy of Cultured Cells
  16. Altmetric Badge
    Chapter 15 Synthesis of Janelia Fluor HaloTag and SNAP-Tag Ligands and Their Use in Cellular Imaging Experiments
  17. Altmetric Badge
    Chapter 16 Measuring Nanometer Distances Between Fluorescent Labels Step-by-Step
  18. Altmetric Badge
    Chapter 17 Correlative Single-Molecule Localization Microscopy and Confocal Microscopy
  19. Altmetric Badge
    Chapter 18 Correlative Fluorescence Super-Resolution Localization Microscopy and Platinum Replica EM on Unroofed Cells
  20. Altmetric Badge
    Chapter 19 In Situ Super-Resolution Imaging of Genomic DNA with OligoSTORM and OligoDNA-PAINT
  21. Altmetric Badge
    Chapter 20 Super-Resolution High Content Screening and Analysis
Attention for Chapter 11: Two-Color Single-Molecule Tracking in Live Cells
Altmetric Badge

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Two-Color Single-Molecule Tracking in Live Cells
Chapter number 11
Book title
Super-Resolution Microscopy
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7265-4_11
Pubmed ID
Book ISBNs
978-1-4939-7264-7, 978-1-4939-7265-4
Authors

Siegfried Hänselmann, Dirk-Peter Herten

Abstract

Measuring the kinetics of protein-protein interactions between molecules in the plasma membrane of live cells provides valuable information for understanding dynamic processes, like cellular signaling, on a molecular scale. Two-color single-molecule tracking is a fluorescence microscopy-based method to detect and quantify specific protein-protein interactions on a single-event level, providing sensitivity to heterogeneities and rare events. Fundamentally, it allows following the movement of single molecules of two different protein species in live cells with a localization precision beyond the diffraction limit of light in real time. It hence provides information about the diffusion behavior of every protein as well as about their dimerization kinetics. Here, we describe all the necessary steps to obtain two-color tracking data of plasma membrane-associated proteins in live cells using SNAP-tag and HaloTag fusion constructs and total internal reflection fluorescence (TIRF) microscopy. Also, we outline the main steps needed for analyzing the recorded data.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 27%
Student > Ph. D. Student 2 18%
Student > Bachelor 1 9%
Other 1 9%
Student > Master 1 9%
Other 1 9%
Unknown 2 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 36%
Agricultural and Biological Sciences 3 27%
Physics and Astronomy 1 9%
Neuroscience 1 9%
Unknown 2 18%