↓ Skip to main content

Psychological interventions for diabetes-related distress in adults with type 2 diabetes mellitus

Overview of attention for article published in Cochrane database of systematic reviews, September 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (71st percentile)

Mentioned by

twitter
38 tweeters
facebook
2 Facebook pages

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
247 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Psychological interventions for diabetes-related distress in adults with type 2 diabetes mellitus
Published in
Cochrane database of systematic reviews, September 2017
DOI 10.1002/14651858.cd011469.pub2
Pubmed ID
Authors

Boon How Chew, Rimke C Vos, Maria-Inti Metzendorf, Rob JPM Scholten, Guy EHM Rutten

Abstract

Many adults with type 2 diabetes mellitus (T2DM) experience a psychosocial burden and mental health problems associated with the disease. Diabetes-related distress (DRD) has distinct effects on self-care behaviours and disease control. Improving DRD in adults with T2DM could enhance psychological well-being, health-related quality of life, self-care abilities and disease control, also reducing depressive symptoms. To assess the effects of psychological interventions for diabetes-related distress in adults with T2DM. We searched the Cochrane Library, MEDLINE, Embase, PsycINFO, CINAHL, BASE, WHO ICTRP Search Portal and ClinicalTrials.gov. The date of the last search was December 2014 for BASE and 21 September 2016 for all other databases. We included randomised controlled trials (RCTs) on the effects of psychological interventions for DRD in adults (18 years and older) with T2DM. We included trials if they compared different psychological interventions or compared a psychological intervention with usual care. Primary outcomes were DRD, health-related quality of life (HRQoL) and adverse events. Secondary outcomes were self-efficacy, glycosylated haemoglobin A1c (HbA1c), blood pressure, diabetes-related complications, all-cause mortality and socioeconomic effects. Two review authors independently identified publications for inclusion and extracted data. We classified interventions according to their focus on emotion, cognition or emotion-cognition. We performed random-effects meta-analyses to compute overall estimates. We identified 30 RCTs with 9177 participants. Sixteen trials were parallel two-arm RCTs, and seven were three-arm parallel trials. There were also seven cluster-randomised trials: two had four arms, and the remaining five had two arms. The median duration of the intervention was six months (range 1 week to 24 months), and the median follow-up period was 12 months (range 0 to 12 months). The trials included a wide spectrum of interventions and were both individual- and group-based.A meta-analysis of all psychological interventions combined versus usual care showed no firm effect on DRD (standardised mean difference (SMD) -0.07; 95% CI -0.16 to 0.03; P = 0.17; 3315 participants; 12 trials; low-quality evidence), HRQoL (SMD 0.01; 95% CI -0.09 to 0.11; P = 0.87; 1932 participants; 5 trials; low-quality evidence), all-cause mortality (11 per 1000 versus 11 per 1000; risk ratio (RR) 1.01; 95% CI 0.17 to 6.03; P = 0.99; 1376 participants; 3 trials; low-quality evidence) or adverse events (17 per 1000 versus 41 per 1000; RR 2.40; 95% CI 0.78 to 7.39; P = 0.13; 438 participants; 3 trials; low-quality evidence). We saw small beneficial effects on self-efficacy and HbA1c at medium-term follow-up (6 to 12 months): on self-efficacy the SMD was 0.15 (95% CI 0.00 to 0.30; P = 0.05; 2675 participants; 6 trials; low-quality evidence) in favour of psychological interventions; on HbA1c there was a mean difference (MD) of -0.14% (95% CI -0.27 to 0.00; P = 0.05; 3165 participants; 11 trials; low-quality evidence) in favour of psychological interventions. Our included trials did not report diabetes-related complications or socioeconomic effects.Many trials were small and were at high risk of bias for incomplete outcome data as well as possible performance and detection biases in the subjective questionnaire-based outcomes assessment, and some appeared to be at risk of selective reporting. There are four trials awaiting further classification. These are parallel RCTs with cognition-focused and emotion-cognition focused interventions. There are another 18 ongoing trials, likely focusing on emotion-cognition or cognition, assessing interventions such as diabetes self-management support, telephone-based cognitive behavioural therapy, stress management and a web application for problem solving in diabetes management. Most of these trials have a community setting and are based in the USA. Low-quality evidence showed that none of the psychological interventions would improve DRD more than usual care. Low-quality evidence is available for improved self-efficacy and HbA1c after psychological interventions. This means that we are uncertain about the effects of psychological interventions on these outcomes. However, psychological interventions probably have no substantial adverse events compared to usual care. More high-quality research with emotion-focused programmes, in non-US and non-European settings and in low- and middle-income countries, is needed.

Twitter Demographics

The data shown below were collected from the profiles of 38 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 247 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Australia 1 <1%
United States 1 <1%
Unknown 245 99%

Demographic breakdown

Readers by professional status Count As %
Unspecified 56 23%
Student > Master 49 20%
Student > Ph. D. Student 29 12%
Student > Bachelor 29 12%
Researcher 28 11%
Other 56 23%
Readers by discipline Count As %
Medicine and Dentistry 81 33%
Unspecified 65 26%
Nursing and Health Professions 37 15%
Psychology 23 9%
Social Sciences 19 8%
Other 22 9%

Attention Score in Context

This research output has an Altmetric Attention Score of 24. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 July 2018.
All research outputs
#649,859
of 13,190,464 outputs
Outputs from Cochrane database of systematic reviews
#2,123
of 10,519 outputs
Outputs of similar age
#24,342
of 271,496 outputs
Outputs of similar age from Cochrane database of systematic reviews
#69
of 245 outputs
Altmetric has tracked 13,190,464 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one has done well, scoring higher than 79% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 271,496 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 245 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.