↓ Skip to main content

Lipid-mediated Protein Signaling

Overview of attention for book
Attention for Chapter 2: The Driving Force of Alpha-Synuclein Insertion and Amyloid Channel Formation in the Plasma Membrane of Neural Cells: Key Role of Ganglioside- and Cholesterol-Binding Domains
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
26 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Driving Force of Alpha-Synuclein Insertion and Amyloid Channel Formation in the Plasma Membrane of Neural Cells: Key Role of Ganglioside- and Cholesterol-Binding Domains
Chapter number 2
Book title
Lipid-mediated Protein Signaling
Published in
Advances in experimental medicine and biology, January 2013
DOI 10.1007/978-94-007-6331-9_2
Pubmed ID
Book ISBNs
978-9-40-076330-2, 978-9-40-076331-9
Authors

Jacques Fantini, Nouara Yahi, Fantini, Jacques, Yahi, Nouara

Abstract

Alpha-synuclein is an amyloidogenic protein expressed in brain and involved in Parkinson's disease. It is an intrinsically disordered protein that folds into an alpha-helix rich structure upon binding to membrane lipids. Helical alpha-synuclein can penetrate the membrane and form oligomeric ion channels, thereby eliciting important perturbations of calcium fluxes. The study of alpha-synuclein/lipid interactions had shed some light on the molecular mechanisms controlling the targeting and functional insertion of alpha-synuclein in neural membranes. The protein first interacts with a cell surface glycosphingolipid (ganglioside GM3 in astrocytes or GM1 in neurons). This induces the folding of an alpha-helical domain containing a tilted peptide (67-78) that displays a high affinity for cholesterol. The driving force of the insertion process is the formation of a transient OH-Pi hydrogen bond between the ganglioside and the aromatic ring of the alpha-synuclein residue Tyr-39. The higher polarity of Tyr-39 vs. the lipid bilayer forces the protein to cross the membrane, allowing the tilted peptide to reach cholesterol. The tilted geometry of the cholesterol/alpha-synuclein complex facilitates the formation of an oligomeric channel. Interestingly, this functional cooperation between glycosphingolipids and cholesterol presents a striking analogy with virus fusion mechanisms.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 18%
Student > Ph. D. Student 6 15%
Researcher 4 10%
Student > Bachelor 3 8%
Professor 3 8%
Other 6 15%
Unknown 10 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 23%
Biochemistry, Genetics and Molecular Biology 8 21%
Neuroscience 4 10%
Chemistry 3 8%
Medicine and Dentistry 2 5%
Other 4 10%
Unknown 9 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 December 2017.
All research outputs
#23,391,126
of 26,017,215 outputs
Outputs from Advances in experimental medicine and biology
#4,336
of 5,299 outputs
Outputs of similar age
#262,820
of 295,070 outputs
Outputs of similar age from Advances in experimental medicine and biology
#148
of 171 outputs
Altmetric has tracked 26,017,215 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,299 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 295,070 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.