↓ Skip to main content

High-resolution near real-time drought monitoring in South Asia

Overview of attention for article published in Scientific Data, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

news
1 news outlet
policy
1 policy source
twitter
12 X users
facebook
1 Facebook page

Readers on

mendeley
281 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
High-resolution near real-time drought monitoring in South Asia
Published in
Scientific Data, October 2017
DOI 10.1038/sdata.2017.145
Pubmed ID
Authors

Saran Aadhar, Vimal Mishra

Abstract

Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 281 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 281 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 71 25%
Researcher 34 12%
Student > Master 31 11%
Student > Doctoral Student 17 6%
Student > Bachelor 9 3%
Other 30 11%
Unknown 89 32%
Readers by discipline Count As %
Engineering 43 15%
Environmental Science 41 15%
Earth and Planetary Sciences 35 12%
Agricultural and Biological Sciences 20 7%
Social Sciences 7 2%
Other 25 9%
Unknown 110 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 February 2022.
All research outputs
#1,459,545
of 23,565,002 outputs
Outputs from Scientific Data
#591
of 2,633 outputs
Outputs of similar age
#30,990
of 324,247 outputs
Outputs of similar age from Scientific Data
#20
of 63 outputs
Altmetric has tracked 23,565,002 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,633 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 24.3. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,247 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 63 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.