↓ Skip to main content

The risk of type 2 oral polio vaccine use in post-cessation outbreak response

Overview of attention for article published in BMC Medicine, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

blogs
1 blog
policy
1 policy source
twitter
9 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
43 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The risk of type 2 oral polio vaccine use in post-cessation outbreak response
Published in
BMC Medicine, October 2017
DOI 10.1186/s12916-017-0937-y
Pubmed ID
Authors

Kevin A. McCarthy, Guillaume Chabot-Couture, Michael Famulare, Hil M. Lyons, Laina D. Mercer

Abstract

Wild type 2 poliovirus was last observed in 1999. The Sabin-strain oral polio vaccine type 2 (OPV2) was critical to eradication, but it is known to revert to a neurovirulent phenotype, causing vaccine-associated paralytic poliomyelitis. OPV2 is also transmissible and can establish circulating lineages, called circulating vaccine-derived polioviruses (cVDPVs), which can also cause paralytic outbreaks. Thus, in April 2016, OPV2 was removed from immunization activities worldwide. Interrupting transmission of cVDPV2 lineages that survive cessation will require OPV2 in outbreak response, which risks seeding new cVDPVs. This potential cascade of outbreak responses seeding VDPVs, necessitating further outbreak responses, presents a critical risk to the OPV2 cessation effort. The EMOD individual-based disease transmission model was used to investigate OPV2 use in outbreak response post-cessation in West African populations. A hypothetical outbreak response in northwest Nigeria is modeled, and a cVDPV2 lineage is considered established if the Sabin strain escapes the response region and continues circulating 9 months post-response. The probability of this event was investigated in a variety of possible scenarios. Under a broad range of scenarios, the probability that widespread OPV2 use in outbreak response (~2 million doses) establishes new cVDPV2 lineages in this model may exceed 50% as soon as 18 months or as late as 4 years post-cessation. The risk of a cycle in which outbreak responses seed new cVDPV2 lineages suggests that OPV2 use should be managed carefully as time from cessation increases. It is unclear whether this risk can be mitigated in the long term, as mucosal immunity against type 2 poliovirus declines globally. Therefore, current programmatic strategies should aim to minimize the possibility that continued OPV2 use will be necessary in future years: conducting rapid and aggressive outbreak responses where cVDPV2 lineages are discovered, maintaining high-quality surveillance in all high-risk settings, strengthening the use of the inactivated polio vaccine as a booster in the OPV2-exposed and in routine immunization, and gaining access to currently inaccessible areas of the world to conduct surveillance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 43 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 43 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 23%
Student > Master 7 16%
Student > Ph. D. Student 6 14%
Professor > Associate Professor 2 5%
Lecturer > Senior Lecturer 1 2%
Other 2 5%
Unknown 15 35%
Readers by discipline Count As %
Medicine and Dentistry 5 12%
Agricultural and Biological Sciences 5 12%
Biochemistry, Genetics and Molecular Biology 4 9%
Social Sciences 3 7%
Computer Science 2 5%
Other 5 12%
Unknown 19 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 April 2023.
All research outputs
#2,325,873
of 24,766,831 outputs
Outputs from BMC Medicine
#1,541
of 3,834 outputs
Outputs of similar age
#44,120
of 328,206 outputs
Outputs of similar age from BMC Medicine
#14
of 43 outputs
Altmetric has tracked 24,766,831 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,834 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 44.8. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,206 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.