↓ Skip to main content

Copper toxicity in a New Zealand dairy herd

Overview of attention for article published in Irish Veterinary Journal, September 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Copper toxicity in a New Zealand dairy herd
Published in
Irish Veterinary Journal, September 2014
DOI 10.1186/2046-0481-67-20
Pubmed ID
Authors

Howard Johnston, Laura Beasley, Neil MacPherson

Abstract

Chronic copper toxicity was diagnosed in a Jersey herd in the Waikato region of New Zealand following an investigation into the deaths of six cattle from a herd of 250 dry cows. Clinical signs and post-mortem examination results were consistent with a hepatopathy, and high concentrations of copper in liver and blood samples of clinically affected animals confirmed copper toxicity. Liver copper concentrations and serum gamma-glutamyl transferase activities were both raised in a group of healthy animals sampled at random from the affected herd, indicating an ongoing risk to the remaining cattle; these animals all had serum copper concentrations within normal limits. Serum samples and liver biopsies were also collected and assayed for copper from animals within two other dairy herds on the same farm; combined results from all three herds showed poor correlation between serum and liver copper concentrations. To reduce liver copper concentrations the affected herd was drenched with 0.5 g ammonium molybdate and 1 g sodium sulphate per cow for five days, and the herd was given no supplementary feed or mineral supplements. Liver biopsies were repeated 44 days after the initial biopsies (approximately 1 month after the end of the drenching program); these showed a significant 37.3% decrease in liver copper concentrations (P <0.02). Also there were no further deaths after the start of the drenching program. Since there was no control group it is impossible to quantify the effect of the drenching program in this case, and dietary changes were also made that would have depleted liver copper stores. Historical analysis of the diet was difficult due to poor record keeping, but multiple sources of copper contributed to a long term copper over supplementation of the herd; the biggest source of copper was a mineral supplement. The farmer perceived this herd to have problems with copper deficiency prior to the diagnosis of copper toxicity, so this case demonstrates the importance of monitoring herd copper status regularly. Also the poor correlation between liver and serum copper concentrations in the three herds sampled demonstrates the importance of using liver copper concentration to assess herd copper status.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 2%
Unknown 49 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 14%
Student > Ph. D. Student 5 10%
Student > Doctoral Student 5 10%
Other 4 8%
Student > Postgraduate 3 6%
Other 9 18%
Unknown 17 34%
Readers by discipline Count As %
Agricultural and Biological Sciences 15 30%
Veterinary Science and Veterinary Medicine 10 20%
Medicine and Dentistry 2 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Immunology and Microbiology 1 2%
Other 3 6%
Unknown 18 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 March 2017.
All research outputs
#17,285,036
of 25,371,288 outputs
Outputs from Irish Veterinary Journal
#144
of 257 outputs
Outputs of similar age
#157,720
of 263,027 outputs
Outputs of similar age from Irish Veterinary Journal
#5
of 5 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 257 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,027 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one.