↓ Skip to main content

Negative effects of long-term feeding of high-grain diets to lactating goats on milk fat production and composition by regulating gene expression and DNA methylation in the mammary gland

Overview of attention for article published in Journal of Animal Science and Biotechnology, October 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Negative effects of long-term feeding of high-grain diets to lactating goats on milk fat production and composition by regulating gene expression and DNA methylation in the mammary gland
Published in
Journal of Animal Science and Biotechnology, October 2017
DOI 10.1186/s40104-017-0204-2
Pubmed ID
Authors

Ping Tian, Yanwen Luo, Xian Li, Jing Tian, Shiyu Tao, Canfeng Hua, Yali Geng, Yingdong Ni, Ruqian Zhao

Abstract

It is well known that feeding a high concentrate (HC) diet to lactating ruminants likely induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat production. However, the effects of feeding a HC diet for long periods on milk fatty acids composition and the mechanism behind the decline of milk fat still remains poorly understood. The aim of this study was to investigate the impact of feeding a HC diet to lactating dairy goats on milk fat yield and fatty acids composition with an emphasis on the mechanisms underlying the milk fat depression. Seventeen mid-lactating dairy goats were randomly allocated to three groups. The control treatment was fed a low-concentrate diet (35% concentrate, n = 5, LC) and there were two high-concentrate treatments (65% concentrate, HC), one fed a high concentrate diet for a long period (19 wks, n = 7, HL); one fed a high concentrate diet for a short period of time (4 wk, n = 5, HS). Milk fat production and fatty acids profiles were measured. In order to investigate the mechanisms underlying the changes in milk fat production and composition, the gene expression involved in lipid metabolism and DNA methylation in the mammary gland were also analyzed. Milk production was increased by feeding the HC diet in the HS and HL groups compared with the LC diet (P < 0.01), while the percentage of milk fat was lower in the HL (P < 0.05) but not in the HS group. The total amount of saturated fatty acids (SFA) in the milk was not changed by feeding the HC diet, whereas the levels of unsaturated fatty acids (UFA) and monounsaturated fatty acids (MUFA) were markedly decreased in the HL group compared with the LC group (P < 0.05). Among these fatty acids, the concentrations of C15:0 (P < 0.01), C17:0 (P < 0.01), C17:1 (P < 0.01), C18:1n-9c (P < 0.05), C18:3n-3r (P < 0.01) and C20:0 (P < 0.01) were markedly lower in the HL group, and the concentrations of C20:0 (P < 0.05) and C18:3n-3r (P < 0.01) were lower in the HS group compared with the LC group. However, the concentrations of C18:2n-6c (P < 0.05) and C20:4n-6 (P < 0.05) in the milk fat were higher in the HS group. Real-time PCR results showed that the mRNA expression of the genes involved in milk fat production in the mammary gland was generally decreased in the HL and HS groups compared with the LC group. Among these genes, ACSL1, ACSS1 & 2, ACACA, FAS, SCD, FADS2, and SREBP1 were down-regulated in the mammary gland of the HL group (P < 0.05), and the expressions of ACSS2, ACACA, and FADS2 mRNA were markedly decreased in the HS goats compared with the LC group (P < 0.05). In contrast to the gene expression, the level of DNA methylation in the promoter regions of the ACACA and SCD genes was increased in the HL group compared with the LC group (P < 0.05). The levels of ACSL1 protein expression and FAS enzyme activity were also decreased in the mammary gland of the HL compared with the LC group (P < 0.05). Long-term feeding of a HC diet to lactating goats induced milk fat depression and FAs profile shift with lower MUFAs but higher SFAs. A general down-regulation of the gene expression involved in the milk fat production and a higher DNA methylation in the mammary gland may contribute to the decrease in milk fat production in goats fed a HC diet for long time periods.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 29%
Other 3 21%
Student > Master 2 14%
Professor 1 7%
Student > Ph. D. Student 1 7%
Other 3 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 50%
Unspecified 2 14%
Nursing and Health Professions 2 14%
Biochemistry, Genetics and Molecular Biology 1 7%
Veterinary Science and Veterinary Medicine 1 7%
Other 1 7%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2017.
All research outputs
#7,877,602
of 12,554,960 outputs
Outputs from Journal of Animal Science and Biotechnology
#133
of 273 outputs
Outputs of similar age
#156,718
of 274,435 outputs
Outputs of similar age from Journal of Animal Science and Biotechnology
#2
of 5 outputs
Altmetric has tracked 12,554,960 research outputs across all sources so far. This one is in the 23rd percentile – i.e., 23% of other outputs scored the same or lower than it.
So far Altmetric has tracked 273 research outputs from this source. They receive a mean Attention Score of 2.5. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,435 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than 3 of them.