↓ Skip to main content

Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, May 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

f1000
1 research highlight platform

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
140 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production
Published in
Biotechnology for Biofuels and Bioproducts, May 2015
DOI 10.1186/s13068-015-0264-5
Pubmed ID
Authors

Takahisa Ogawa, Masahiro Tamoi, Ayako Kimura, Ayaka Mine, Harumi Sakuyama, Eriko Yoshida, Takanori Maruta, Kengo Suzuki, Takahiro Ishikawa, Shigeru Shigeoka

Abstract

Microalgae have recently been attracting attention as a potential platform for the production of biofuels. Euglena gracilis, a unicellular phytoflagellate, has been proposed as an attractive feedstock to produce biodiesel because it can produce large amounts of wax esters, consisting of medium-chain fatty acids and alcohols with 14:0 carbon chains. E. gracilis cells highly accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. When grown aerobically and then transferred into anaerobic conditions, E. gracilis cells degrade paramylon to actively synthesize and accumulate wax esters. Thus, the enhanced accumulation of paramylon through the genetic engineering of photosynthesis should increase the capacity for wax ester production. We herein generated transgenic Euglena (EpFS) cells expressing the cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), which is involved in the Calvin cycle, to enhance its photosynthetic activity. FBP/SBPase was successfully expressed within Euglena chloroplasts. The cell volume of the EpFS4 cell line was significantly larger than that of wild-type cells under normal growth conditions. The photosynthetic activity of EpFS4 cells was significantly higher than that of wild type under high light and high CO2, resulting in enhanced biomass production, and the accumulation of paramylon was increased in transgenic cell lines than in wild-type cells. Furthermore, when EpFS cell lines grown under high light and high CO2 were placed on anaerobiosis, the productivity of wax esters was approximately 13- to 100-fold higher in EpFS cell lines than in wild-type cells. Our results obtained here indicate that the efficiency of biomass production in E. gracilis can be improved by genetically modulating photosynthetic capacity, resulting in the enhanced production of wax esters. This is the first step toward the utilization of E. gracilis as a sustainable source for biofuel production under photoautotrophic cultivation.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 140 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 <1%
Mexico 1 <1%
Brazil 1 <1%
Unknown 137 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 25 18%
Student > Bachelor 21 15%
Student > Ph. D. Student 18 13%
Student > Master 12 9%
Other 7 5%
Other 21 15%
Unknown 36 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 42 30%
Biochemistry, Genetics and Molecular Biology 30 21%
Environmental Science 7 5%
Engineering 6 4%
Chemical Engineering 3 2%
Other 4 3%
Unknown 48 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2017.
All research outputs
#17,286,645
of 25,374,917 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#997
of 1,578 outputs
Outputs of similar age
#168,137
of 280,692 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#13
of 21 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 280,692 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 21 others from the same source and published within six weeks on either side of this one. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.