↓ Skip to main content

Potassium Channels

Overview of attention for book
Cover of 'Potassium Channels'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Manipulating Potassium Channel Expression and Function in Hippocampal Neurons by In Utero Electroporation
  3. Altmetric Badge
    Chapter 2 Studying KCNQ1 Mutation and Drug Response in Type 1 Long QT Syndrome Using Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes
  4. Altmetric Badge
    Chapter 3 Monitoring Changes in the Abundance of Endogenously Expressed ATP-Sensitive Potassium (KATP) Channels in the Plasma Membrane Using Surface Biotinylation
  5. Altmetric Badge
    Chapter 4 Nonsense-Mediated mRNA Decay of hERG Mutations in Long QT Syndrome
  6. Altmetric Badge
    Chapter 5 Probing Subunits Interactions in KATP Channels Using Photo-Crosslinking via Genetically Encoded p-Azido-l-phenylalanine
  7. Altmetric Badge
    Chapter 6 Hyper-SUMOylation of K+ Channels in Sudden Unexplained Death in Epilepsy: Isolation and Primary Culture of Dissociated Hippocampal Neurons from Newborn Mice for Subcellular Localization
  8. Altmetric Badge
    Chapter 7 Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca2+ Influx to Assess the Role of Potassium Channels on β-Cell Function
  9. Altmetric Badge
    Chapter 8 Methods for Characterizing Disease-Associated ATP-Sensitive Potassium Channel Mutations
  10. Altmetric Badge
    Chapter 9 Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters
  11. Altmetric Badge
    Chapter 10 Nuclear Magnetic Resonance Approaches for Characterizing Protein-Protein Interactions
  12. Altmetric Badge
    Chapter 11 Studying Mechanosensitivity of Two-Pore Domain K+ Channels in Cellular and Reconstituted Proteoliposome Membranes
  13. Altmetric Badge
    Chapter 12 Migration of PIP2 on KCNQ2 Surface Revealed by Molecular Dynamics Simulations
  14. Altmetric Badge
    Chapter 13 Studying Structural Dynamics of Potassium Channels by Single-Molecule FRET
  15. Altmetric Badge
    Chapter 14 Patch-Clamp Recordings of the KcsA K+ Channel in Unilamellar Blisters
  16. Altmetric Badge
    Chapter 15 Combinatorial Assembly of Lumitoxins
  17. Altmetric Badge
    Chapter 16 Characterization of MC4R Regulation of the Kir7.1 Channel Using the Tl+ Flux Assay
  18. Altmetric Badge
    Chapter 17 Stopped-Flow Fluorometric Ion Flux Assay for Ligand-Gated Ion Channel Studies
  19. Altmetric Badge
    Chapter 18 In Vivo Analysis of Potassium Channelopathies: Loose Patch Recording of Purkinje Cell Firing in Living, Awake Zebrafish
  20. Altmetric Badge
    Chapter 19 Site-Directed Unnatural Amino Acid Mutagenesis to Investigate Potassium Channel Pharmacology in Xenopus laevis Oocytes
  21. Altmetric Badge
    Chapter 20 Random Spherically Constrained Single-Particle (RSC) Method to Study Voltage-Gated Ion Channels
  22. Altmetric Badge
    Chapter 21 CW-EPR Spectroscopy and Site-Directed Spin Labeling to Study the Structural Dynamics of Ion Channels
  23. Altmetric Badge
    Chapter 22 Ion Binding to Transport Proteins using Isothermal Titration Calorimetry
  24. Altmetric Badge
    Chapter 23 Building Atomic Models of the Ion Channels Based on Low Resolution Electron Microscopy Maps and Homology Modeling
  25. Altmetric Badge
    Chapter 24 Studying Kv Channels Function using Computational Methods
  26. Altmetric Badge
    Chapter 25 Erratum to: Ion Binding to Transport Proteins using Isothermal Titration Calorimetry
Attention for Chapter 6: Hyper-SUMOylation of K+ Channels in Sudden Unexplained Death in Epilepsy: Isolation and Primary Culture of Dissociated Hippocampal Neurons from Newborn Mice for Subcellular Localization
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Hyper-SUMOylation of K+ Channels in Sudden Unexplained Death in Epilepsy: Isolation and Primary Culture of Dissociated Hippocampal Neurons from Newborn Mice for Subcellular Localization
Chapter number 6
Book title
Potassium Channels
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7362-0_6
Pubmed ID
Book ISBNs
978-1-4939-7361-3, 978-1-4939-7362-0
Authors

Xu Chen, Shanshan Zhang, Jifang Huang, Wanying Dong, Hui Xiao, Huanjie Shao, Jinke Cheng, Hongmei Wu, Yitao Qi

Abstract

The physiological characteristics of rat and murine hippocampal neurons are widely studied, especially because of the involvement of the hippocampus in learning, memory, and neurological functions. Primary cultures of hippocampal neurons are commonly used to discover cellular and molecular mechanisms in neurobiology. By isolating and culturing individual hippocampal neurons, neuroscientists are able to investigate the activity of neurons at the individual cell and single synapse level, and to analyze properties related to cellular structure, cellular trafficking, and individual protein subcellular localization or protein-protein interaction using a variety of biochemical techniques. Conclusions addressed from such research are critical for testing theories related to memory, learning, and neurological functions. Here, we will describe how to isolate and culture primary hippocampal cells from newborn mice. The hippocampus may be isolated from newborn mice in as short as 2 min, and the cell cultures can be maintained for up to 2 weeks, and then ready for investigation of subcellular localization of K(+) channel proteins and interaction with SUMO-specific protease 2 (SENP2). The protocol provides a fast and efficient technique for the culture of neuronal cells from mouce hippocampal tissue, and will ensure the immunocytochemistry detection of subcellular localization or protein-protein interactions in neurological research.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 14%
Student > Doctoral Student 1 14%
Student > Master 1 14%
Unknown 4 57%
Readers by discipline Count As %
Neuroscience 2 29%
Agricultural and Biological Sciences 1 14%
Unknown 4 57%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2017.
All research outputs
#15,481,888
of 23,006,268 outputs
Outputs from Methods in molecular biology
#5,387
of 13,160 outputs
Outputs of similar age
#269,678
of 442,258 outputs
Outputs of similar age from Methods in molecular biology
#596
of 1,498 outputs
Altmetric has tracked 23,006,268 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,160 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,258 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,498 others from the same source and published within six weeks on either side of this one. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.