↓ Skip to main content

Strain-dependent interactions of Streptococcus gallolyticus subsp. gallolyticus with human blood cells

Overview of attention for article published in BMC Microbiology, October 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Strain-dependent interactions of Streptococcus gallolyticus subsp. gallolyticus with human blood cells
Published in
BMC Microbiology, October 2017
DOI 10.1186/s12866-017-1116-1
Pubmed ID
Authors

Imke Grimm, Melanie Weinstock, Ingvild Birschmann, Jens Dreier, Cornelius Knabbe, Tanja Vollmer

Abstract

Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is the causative pathogen in up to 20% of streptococcal-induced infective endocarditis (IE) cases. However, the underlying mechanisms of pathogenesis in S. gallolyticus have not yet been solved. Pathogens causing IE need to employ virulent strategies to initiate and establish infections, such as escape the bloodstream, invade the host-cell, and persist intracellularly. In this study, we examined the induction of inflammation by different S. gallolyticus strains in relation to their survival in whole blood and cell culture models as well as their ability to induce platelet aggregation. Phagocytosis of these bacteria by macrophages, followed by intracellular survival, was also quantified. In whole blood and THP-1 cell culture assays bacterial growth kinetics was determined by plating, followed by colony counting. Induction of interleukin (IL)-6 expression in whole blood of three healthy volunteers, caused by different strains, was quantified by ELISA. Gene expression of cytokines (IL1B, IL6 and IL8) was quantified by real-time PCR after stimulating THP-1 monocytes with bacteria. Induction of platelet aggregation was analyzed by light transmission aggregometry using the BORN method. A macrophage model was used to analyze phagocytosis of strains and their survival in macrophages within 48 h. Strains promoted IL-6 secretion in a time-dependent fashion. For example, DSM16831 induced IL-6 secretion in whole blood earlier than other isolates, and was eliminated in the whole blood of one volunteer, whereas UCN34 could grow. Platelet aggregation depended on the different isolates used and on the individual platelet donor. Two strains (AC1181 and 010672/01) induced cytokine gene expression in THP-1 monocytes only marginally, compared to other strains. The phagocytosis rate of S. gallolyticus isolates differed significantly, and the isolates UCN34 and BAA-2069 could persist for a considerable time in the phagocytes. The strain-dependent differences of S. gallolyticus isolates, observed during interaction with human blood cells, support the hypotheses that divergences in individual virulence factors determine a distinct pathogenicity of the isolates. These data constitute an additional step towards the elucidation of mechanisms in the complex, multifactorial pathogenesis of this IE pathogen.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 21%
Student > Ph. D. Student 4 21%
Researcher 3 16%
Student > Doctoral Student 2 11%
Student > Bachelor 2 11%
Other 1 5%
Unknown 3 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 32%
Agricultural and Biological Sciences 3 16%
Medicine and Dentistry 3 16%
Immunology and Microbiology 2 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Other 0 0%
Unknown 4 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 November 2017.
All research outputs
#12,762,934
of 23,007,053 outputs
Outputs from BMC Microbiology
#1,120
of 3,208 outputs
Outputs of similar age
#149,022
of 328,360 outputs
Outputs of similar age from BMC Microbiology
#13
of 39 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,208 research outputs from this source. They receive a mean Attention Score of 4.1. This one has gotten more attention than average, scoring higher than 64% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,360 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.