↓ Skip to main content

Different methods and settings for glucose monitoring for gestational diabetes during pregnancy

Overview of attention for article published in Cochrane database of systematic reviews, October 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Good Attention Score compared to outputs of the same age and source (65th percentile)

Mentioned by

twitter
25 tweeters
facebook
9 Facebook pages

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
203 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Different methods and settings for glucose monitoring for gestational diabetes during pregnancy
Published in
Cochrane database of systematic reviews, October 2017
DOI 10.1002/14651858.cd011069.pub2
Pubmed ID
Authors

Puvaneswary Raman, Emily Shepherd, Therese Dowswell, Philippa Middleton, Caroline A Crowther

Abstract

Incidence of gestational diabetes mellitus (GDM) is increasing worldwide. Blood glucose monitoring plays a crucial part in maintaining glycaemic control in women with GDM and is generally recommended by healthcare professionals. There are several different methods for monitoring blood glucose which can be carried out in different settings (e.g. at home versus in hospital). The objective of this review is to compare the effects of different methods and settings for glucose monitoring for women with GDM on maternal and fetal, neonatal, child and adult outcomes, and use and costs of health care. We searched the Cochrane Pregnancy and Childbirth Group Trials Register (30 September 2016) and reference lists of retrieved studies. Randomised controlled trials (RCTs) or quasi-randomised controlled trials (qRCTs) comparing different methods (such as timings and frequencies) or settings, or both, for blood glucose monitoring for women with GDM. Two authors independently assessed study eligibility, risk of bias, and extracted data. Data were checked for accuracy.We assessed the quality of the evidence for the main comparisons using GRADE, for:- primary outcomes for mothers: that is, hypertensive disorders of pregnancy; caesarean section; type 2 diabetes; and- primary outcomes for children: that is, large-for-gestational age; perinatal mortality; death or serious morbidity composite; childhood/adulthood neurosensory disability;- secondary outcomes for mothers: that is, induction of labour; perineal trauma; postnatal depression; postnatal weight retention or return to pre-pregnancy weight; and- secondary outcomes for children: that is, neonatal hypoglycaemia; childhood/adulthood adiposity; childhood/adulthood type 2 diabetes. We included 11 RCTs (10 RCTs; one qRCT) that randomised 1272 women with GDM in upper-middle or high-income countries; we considered these to be at a moderate to high risk of bias. We assessed the RCTs under five comparisons. For outcomes assessed using GRADE, we downgraded for study design limitations, imprecision and inconsistency. Three trials received some support from commercial partners who provided glucose meters or financial support, or both. Main comparisons Telemedicine versus standard care for glucose monitoring (five RCTs): we observed no clear differences between the telemedicine and standard care groups for the mother, for:- pre-eclampsia or pregnancy-induced hypertension (risk ratio (RR) 1.49, 95% confidence interval (CI) 0.69 to 3.20; 275 participants; four RCTs; very low quality evidence);- caesarean section (average RR 1.05, 95% CI 0.72 to 1.53; 478 participants; 5 RCTs; very low quality evidence); and- induction of labour (RR 1.06, 95% CI 0.63 to 1.77; 47 participants; 1 RCT; very low quality evidence);or for the child, for:- large-for-gestational age (RR 1.41, 95% CI 0.76 to 2.64; 228 participants; 3 RCTs; very low quality evidence);- death or serious morbidity composite (RR 1.06, 95% CI 0.68 to 1.66; 57 participants; 1 RCT; very low quality evidence); and- neonatal hypoglycaemia (RR 1.14, 95% CI 0.48 to 2.72; 198 participants; 3 RCTs; very low quality evidence).There were no perinatal deaths in two RCTs (131 participants; very low quality evidence). Self-monitoring versus periodic glucose monitoring (two RCTs): we observed no clear differences between the self-monitoring and periodic glucose monitoring groups for the mother, for:- pre-eclampsia (RR 0.17, 95% CI 0.01 to 3.49; 58 participants; 1 RCT; very low quality evidence); and- caesarean section (average RR 1.18, 95% CI 0.61 to 2.27; 400 participants; 2 RCTs; low quality evidence);or for the child, for:- perinatal mortality (RR 1.54, 95% CI 0.21 to 11.24; 400 participants; 2 RCTs; very low quality evidence);- large-for-gestational age (RR 0.82, 95% CI 0.50 to 1.37; 400 participants; 2 RCTs; low quality evidence); and- neonatal hypoglycaemia (RR 0.64, 95% CI 0.39 to 1.06; 391 participants; 2 RCTs; low quality evidence). Continuous glucose monitoring system (CGMS) versus self-monitoring of glucose (two RCTs): we observed no clear differences between the CGMS and self-monitoring groups for the mother, for:- caesarean section (RR 0.91, 95% CI 0.68 to 1.20; 179 participants; 2 RCTs; very low quality evidence);or for the child, for:- large-for-gestational age (RR 0.67, 95% CI 0.43 to 1.05; 106 participants; 1 RCT; very low quality evidence) and- neonatal hypoglycaemia (RR 0.79, 95% CI 0.35 to 1.78; 179 participants; 2 RCTs; very low quality evidence).There were no perinatal deaths in the two RCTs (179 participants; very low quality evidence). Other comparisons Modem versus telephone transmission for glucose monitoring (one RCT): none of the review's primary outcomes were reported in this trial Postprandial versus preprandial glucose monitoring (one RCT): we observed no clear differences between the postprandial and preprandial glucose monitoring groups for the mother, for:- pre-eclampsia (RR 1.00, 95% CI 0.15 to 6.68; 66 participants; 1 RCT);- caesarean section (RR 0.62, 95% CI 0.29 to 1.29; 66 participants; 1 RCT); and- perineal trauma (RR 0.38, 95% CI 0.11 to 1.29; 66 participants; 1 RCT);or for the child, for:- neonatal hypoglycaemia (RR 0.14, 95% CI 0.02 to 1.10; 66 participants; 1 RCT).There were fewer large-for-gestational-age infants born to mothers in the postprandial compared with the preprandial glucose monitoring group (RR 0.29, 95% CI 0.11 to 0.78; 66 participants; 1 RCT). Evidence from 11 RCTs assessing different methods or settings for glucose monitoring for GDM suggests no clear differences for the primary outcomes or other secondary outcomes assessed in this review.However, current evidence is limited by the small number of RCTs for the comparisons assessed, small sample sizes, and the variable methodological quality of the RCTs. More evidence is needed to assess the effects of different methods and settings for glucose monitoring for GDM on outcomes for mothers and their children, including use and costs of health care. Future RCTs may consider collecting and reporting on the standard outcomes suggested in this review.

Twitter Demographics

The data shown below were collected from the profiles of 25 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 203 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 203 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 57 28%
Student > Master 36 18%
Student > Bachelor 26 13%
Student > Ph. D. Student 22 11%
Researcher 21 10%
Other 41 20%
Readers by discipline Count As %
Unspecified 65 32%
Medicine and Dentistry 59 29%
Nursing and Health Professions 23 11%
Psychology 14 7%
Social Sciences 10 5%
Other 32 16%

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 February 2018.
All research outputs
#943,278
of 13,190,464 outputs
Outputs from Cochrane database of systematic reviews
#2,966
of 10,519 outputs
Outputs of similar age
#37,563
of 311,295 outputs
Outputs of similar age from Cochrane database of systematic reviews
#85
of 247 outputs
Altmetric has tracked 13,190,464 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,295 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 247 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.