↓ Skip to main content

Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis

Overview of attention for article published in Genome Biology, September 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)

Mentioned by

blogs
1 blog
twitter
2 X users

Citations

dimensions_citation
65 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis
Published in
Genome Biology, September 2017
DOI 10.1186/s13059-017-1301-4
Pubmed ID
Authors

Jacki E. Heraud-Farlow, Alistair M. Chalk, Sandra E. Linder, Qin Li, Scott Taylor, Joshua M. White, Lokman Pang, Brian J. Liddicoat, Ankita Gupte, Jin Billy Li, Carl R. Walkley

Abstract

Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain. We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1 (E861A/E861A) Ifih1 (-/-) mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1 (E861A/E861A) Ifih1 (-/-) mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1 (-/-) and Adar1 (E861A/E861A) alleles demonstrates a high degree of concordance on both Ifih1 (+/+) and Ifih1 (-/-) backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions. These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 21%
Student > Bachelor 9 12%
Researcher 7 9%
Student > Master 6 8%
Other 5 6%
Other 8 10%
Unknown 26 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 26%
Agricultural and Biological Sciences 14 18%
Immunology and Microbiology 5 6%
Medicine and Dentistry 5 6%
Neuroscience 4 5%
Other 3 4%
Unknown 26 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2017.
All research outputs
#4,314,251
of 25,382,440 outputs
Outputs from Genome Biology
#2,681
of 4,468 outputs
Outputs of similar age
#70,123
of 323,304 outputs
Outputs of similar age from Genome Biology
#46
of 54 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,468 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,304 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.