↓ Skip to main content

Mefloquine for preventing malaria during travel to endemic areas

Overview of attention for article published in Cochrane database of systematic reviews, October 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
7 news outlets
blogs
1 blog
twitter
19 tweeters
facebook
1 Facebook page
wikipedia
3 Wikipedia pages
googleplus
1 Google+ user

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
161 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mefloquine for preventing malaria during travel to endemic areas
Published in
Cochrane database of systematic reviews, October 2017
DOI 10.1002/14651858.cd006491.pub4
Pubmed ID
Authors

Maya Tickell-Painter, Nicola Maayan, Rachel Saunders, Cheryl Pace, David Sinclair

Abstract

Mefloquine is one of four antimalarial agents commonly recommended for preventing malaria in travellers to malaria-endemic areas. Despite its high efficacy, there is controversy about its psychological side effects. To summarize the efficacy and safety of mefloquine used as prophylaxis for malaria in travellers. We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published on the Cochrane Library; MEDLINE; Embase (OVID); TOXLINE (https://toxnet.nlm.nih.gov/newtoxnet/toxline.htm); and LILACS. We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP; http://www.who.int/ictrp/en/) and ClinicalTrials.gov (https://clinicaltrials.gov/ct2/home) for trials in progress, using 'mefloquine', 'Lariam', and 'malaria' as search terms. The search date was 22 June 2017. We included randomized controlled trials (for efficacy and safety) and non-randomized cohort studies (for safety). We compared prophylactic mefloquine with placebo, no treatment, or an alternative recommended antimalarial agent. Our study populations included all adults and children, including pregnant women. Two review authors independently assessed the eligibility and risk of bias of trials, extracted and analysed data. We compared dichotomous outcomes using risk ratios (RR) with 95% confidence intervals (CI). Prespecified adverse outcomes are included in 'Summary of findings' tables, with the best available estimate of the absolute frequency of each outcome in short-term international travellers. We assessed the certainty of the evidence using the GRADE approach. We included 20 RCTs (11,470 participants); 35 cohort studies (198,493 participants); and four large retrospective analyses of health records (800,652 participants). Nine RCTs explicitly excluded participants with a psychiatric history, and 25 cohort studies stated that the choice of antimalarial agent was based on medical history and personal preference. Most RCTs and cohort studies collected data on self-reported or clinician-assessed symptoms, rather than formal medical diagnoses. Mefloquine efficacyOf 12 trials comparing mefloquine and placebo, none were performed in short-term international travellers, and most populations had a degree of immunity to malaria. The percentage of people developing a malaria episode in the control arm varied from 1% to 82% (median 22%) and 0% to 13% in the mefloquine group (median 1%).In four RCTs that directly compared mefloquine, atovaquone-proguanil and doxycycline in non-immune, short-term international travellers, only one clinical case of malaria occurred (4 trials, 1822 participants). Mefloquine safety versus atovaquone-proguanil Participants receiving mefloquine were more likely to discontinue their medication due to adverse effects than atovaquone-proguanil users (RR 2.86, 95% CI 1.53 to 5.31; 3 RCTs, 1438 participants; high-certainty evidence). There were few serious adverse effects reported with mefloquine (15/2651 travellers) and none with atovaquone-proguanil (940 travellers).One RCT and six cohort studies reported on our prespecified adverse effects. In the RCT with short-term travellers, mefloquine users were more likely to report abnormal dreams (RR 2.04, 95% CI 1.37 to 3.04, moderate-certainty evidence), insomnia (RR 4.42, 95% CI 2.56 to 7.64, moderate-certainty evidence), anxiety (RR 6.12, 95% CI 1.82 to 20.66, moderate-certainty evidence), and depressed mood during travel (RR 5.78, 95% CI 1.71 to 19.61, moderate-certainty evidence). The cohort studies in longer-term travellers were consistent with this finding but most had larger effect sizes. Mefloquine users were also more likely to report nausea (high-certainty evidence) and dizziness (high-certainty evidence).Based on the available evidence, our best estimates of absolute effect sizes for mefloquine versus atovaquone-proguanil are 6% versus 2% for discontinuation of the drug, 13% versus 3% for insomnia, 14% versus 7% for abnormal dreams, 6% versus 1% for anxiety, and 6% versus 1% for depressed mood. Mefloquine safety versus doxycyclineNo difference was found in numbers of serious adverse effects with mefloquine and doxycycline (low-certainty evidence) or numbers of discontinuations due to adverse effects (RR 1.08, 95% CI 0.41 to 2.87; 4 RCTs, 763 participants; low-certainty evidence).Six cohort studies in longer-term occupational travellers reported our prespecified adverse effects; one RCT in military personnel and one cohort study in short-term travellers reported adverse events. Mefloquine users were more likely to report abnormal dreams (RR 10.49, 95% CI 3.79 to 29.10; 4 cohort studies, 2588 participants, very low-certainty evidence), insomnia (RR 4.14, 95% CI 1.19 to 14.44; 4 cohort studies, 3212 participants, very low-certainty evidence), anxiety (RR 18.04, 95% CI 9.32 to 34.93; 3 cohort studies, 2559 participants, very low-certainty evidence), and depressed mood (RR 11.43, 95% CI 5.21 to 25.07; 2 cohort studies, 2445 participants, very low-certainty evidence). The findings of the single cohort study reporting adverse events in short-term international travellers were consistent with this finding but the single RCT in military personnel did not demonstrate a difference between groups in frequencies of abnormal dreams or insomnia.Mefloquine users were less likely to report dyspepsia (RR 0.26, 95% CI 0.09 to 0.74; 5 cohort studies, 5104 participants, low certainty-evidence), photosensitivity (RR 0.08, 95% CI 0.05 to 0.11; 2 cohort studies, 1875 participants, very low-certainty evidence), vomiting (RR 0.18, 95% CI 0.12 to 0.27; 4 cohort studies, 5071 participants, very low-certainty evidence), and vaginal thrush (RR 0.10, 95% CI 0.06 to 0.16; 1 cohort study, 1761 participants, very low-certainty evidence).Based on the available evidence, our best estimates of absolute effect for mefloquine versus doxycyline were: 2% versus 2% for discontinuation, 12% versus 3% for insomnia, 31% versus 3% for abnormal dreams, 18% versus 1% for anxiety, 11% versus 1% for depressed mood, 4% versus 14% for dyspepsia, 2% versus 19% for photosensitivity, 1% versus 5% for vomiting, and 2% versus 16% for vaginal thrush.Additional analyses, including comparisons of mefloquine with chloroquine, added no new information. Subgroup analysis by study design, duration of travel, and military versus non-military participants, provided no conclusive findings. The absolute risk of malaria during short-term travel appears low with all three established antimalarial agents (mefloquine, doxycycline, and atovaquone-proguanil).The choice of antimalarial agent depends on how individual travellers assess the importance of specific adverse effects, pill burden, and cost. Some travellers will prefer mefloquine for its once-weekly regimen, but this should be balanced against the increased frequency of abnormal dreams, anxiety, insomnia, and depressed mood.

Twitter Demographics

The data shown below were collected from the profiles of 19 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 161 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 161 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 42 26%
Student > Bachelor 25 16%
Student > Master 23 14%
Student > Doctoral Student 17 11%
Student > Ph. D. Student 16 10%
Other 38 24%
Readers by discipline Count As %
Unspecified 51 32%
Medicine and Dentistry 47 29%
Nursing and Health Professions 15 9%
Psychology 13 8%
Biochemistry, Genetics and Molecular Biology 5 3%
Other 30 19%

Attention Score in Context

This research output has an Altmetric Attention Score of 76. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 June 2019.
All research outputs
#222,022
of 13,528,187 outputs
Outputs from Cochrane database of systematic reviews
#535
of 10,635 outputs
Outputs of similar age
#10,383
of 313,132 outputs
Outputs of similar age from Cochrane database of systematic reviews
#17
of 247 outputs
Altmetric has tracked 13,528,187 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,635 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,132 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 247 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.