↓ Skip to main content

Subfunctionalization influences the expansion of bacterial multidrug antibiotic resistance

Overview of attention for article published in BMC Genomics, October 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
41 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Subfunctionalization influences the expansion of bacterial multidrug antibiotic resistance
Published in
BMC Genomics, October 2017
DOI 10.1186/s12864-017-4222-4
Pubmed ID
Authors

Elena Perrin, Marco Fondi, Emanuele Bosi, Alessio Mengoni, Silvia Buroni, Viola Camilla Scoffone, Miguel Valvano, Renato Fani

Abstract

Antibiotic resistance is a major problem for human health. Multidrug resistance efflux pumps, especially those of the Resistance-Nodulation-Cell Division (RND) family, are major contributors to high-level antibiotic resistance in Gram-negative bacteria. Most bacterial genomes contain several copies of the different classes of multidrug resistance efflux pumps. Gene duplication and gain of function by the duplicate copies of multidrug resistance efflux pump genes plays a key role in the expansion and diversification of drug-resistance mechanisms. We used two members of the Burkholderia RND superfamily as models to understand how duplication events affect the antibiotic resistance of these strains. First, we analyzed the conservation and distribution of these two RND systems and their regulators across the Burkholderia genus. Through genetic manipulations, we identified both the exact substrate range of these transporters and their eventual interchangeability. We also performed a directed evolution experiment, combined with next generation sequencing, to evaluate the role of antibiotics in the activation of the expression of these systems. Together, our results indicate that the first step to diversify the functions of these pumps arises from changes in their regulation (subfunctionalization) instead of functional mutations. Further, these pumps could rewire their regulation to respond to antibiotics, thus maintaining high genomic plasticity. Studying the regulatory network that controls the expression of the RND pumps will help understand and eventually control the development and expansion of drug resistance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 41 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 41 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 15%
Professor > Associate Professor 6 15%
Student > Master 6 15%
Student > Bachelor 3 7%
Student > Ph. D. Student 3 7%
Other 7 17%
Unknown 10 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 37%
Agricultural and Biological Sciences 4 10%
Immunology and Microbiology 4 10%
Psychology 2 5%
Environmental Science 1 2%
Other 4 10%
Unknown 11 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 November 2017.
All research outputs
#12,741,571
of 23,007,053 outputs
Outputs from BMC Genomics
#4,366
of 10,693 outputs
Outputs of similar age
#148,822
of 328,606 outputs
Outputs of similar age from BMC Genomics
#80
of 198 outputs
Altmetric has tracked 23,007,053 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,693 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,606 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 198 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.