↓ Skip to main content

Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease

Overview of attention for article published in Cochrane database of systematic reviews, November 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
2 news outlets
twitter
22 tweeters
facebook
2 Facebook pages

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
112 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Obstetric outcomes after conservative treatment for cervical intraepithelial lesions and early invasive disease
Published in
Cochrane database of systematic reviews, November 2017
DOI 10.1002/14651858.cd012847
Pubmed ID
Authors

Maria Kyrgiou, Antonios Athanasiou, Ilkka E J Kalliala, Maria Paraskevaidi, Anita Mitra, Pierre PL Martin-Hirsch, Marc Arbyn, Phillip Bennett, Evangelos Paraskevaidis

Abstract

The mean age of women undergoing local treatment for pre-invasive cervical disease (cervical intra-epithelial neoplasia; CIN) or early cervical cancer (stage IA1) is around their 30s and similar to the age of women having their first child. Local cervical treatment has been correlated to adverse reproductive morbidity in a subsequent pregnancy, however, published studies and meta-analyses have reached contradictory conclusions. To assess the effect of local cervical treatment for CIN and early cervical cancer on obstetric outcomes (after 24 weeks of gestation) and to correlate these to the cone depth and comparison group used. We searched the following databases: Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library, 2017, Issue 5), MEDLINE (up to June week 4, 2017) and Embase (up to week 26, 2017). In an attempt to identify articles missed by the search or unpublished data, we contacted experts in the field and we handsearched the references of the retrieved articles and conference proceedings. We included all studies reporting on obstetric outcomes (more than 24 weeks of gestation) in women with or without a previous local cervical treatment for any grade of CIN or early cervical cancer (stage IA1). Treatment included both excisional and ablative methods. We excluded studies that had no untreated reference population, reported outcomes in women who had undergone treatment during pregnancy or had a high-risk treated or comparison group, or both DATA COLLECTION AND ANALYSIS: We classified studies according to the type of treatment and the obstetric endpoint. Studies were classified according to method and obstetric endpoint. Pooled risk ratios (RR) and 95% confidence intervals (CIs) were calculated using a random-effects model and inverse variance. Inter-study heterogeneity was assessed with I(2) statistics. We assessed maternal outcomes that included preterm birth (PTB) (spontaneous and threatened), preterm premature rupture of the membranes (pPROM), chorioamnionitis, mode of delivery, length of labour, induction of delivery, oxytocin use, haemorrhage, analgesia, cervical cerclage and cervical stenosis. The neonatal outcomes included low birth weight (LBW), neonatal intensive care unit (NICU) admission, stillbirth, perinatal mortality and Apgar scores. We included 69 studies (6,357,823 pregnancies: 65,098 pregnancies of treated and 6,292,725 pregnancies of untreated women). Many of the studies included only small numbers of women, were of heterogenous design and in their majority retrospective and therefore at high risk of bias. Many outcomes were assessed to be of low or very low quality (GRADE assessment) and therefore results should be interpreted with caution. Women who had treatment were at increased overall risk of preterm birth (PTB) (less than 37 weeks) (10.7% versus 5.4%, RR 1.75, 95% CI 1.57 to 1.96, 59 studies, 5,242,917 participants, very low quality), severe (less than 32 to 34 weeks) (3.5% versus 1.4%, RR 2.25, 95% CI 1.79 to 2.82), 24 studies, 3,793,874 participants, very low quality), and extreme prematurity (less than 28 to 30 weeks) (1.0% versus 0.3%, (RR 2.23, 95% CI 1.55 to 3.22, 8 studies, 3,910,629 participants, very low quality), as compared to women who had no treatment.The risk of overall prematurity was higher for excisional (excision versus no treatment: 11.2% versus 5.5%, RR 1.87, 95% CI 1.64 to 2.12, 53 studies, 4,599,416 participants) than ablative (ablation versus no treatment: 7.7% versus 4.6%, RR 1.35, 95% CI 1.20 to 1.52, 14 studies, 602,370 participants) treatments and the effect was higher for more radical excisional techniques (less than 37 weeks: cold knife conisation (CKC) (RR 2.70, 95% CI 2.14 to 3.40, 12 studies, 39,102 participants), laser conisation (LC) (RR 2.11, 95% CI 1.26 to 3.54, 9 studies, 1509 participants), large loop excision of the transformation zone (LLETZ) (RR 1.58, 95% CI 1.37 to 1.81, 25 studies, 1,445,104 participants). Repeat treatment multiplied the risk of overall prematurity (repeat versus no treatment: 13.2% versus 4.1%, RR 3.78, 95% CI 2.65 to 5.39, 11 studies, 1,317,284 participants, very low quality). The risk of overall prematurity increased with increasing cone depth (less than 10 mm to 12 mm versus no treatment: 7.1% versus 3.4%, RR 1.54, 95% CI 1.09 to 2.18, 8 studies, 550,929 participants, very low quality; more than 10 mm to 12 mm versus no treatment: 9.8% versus 3.4%, RR 1.93, 95% CI 1.62 to 2.31, 8 studies, 552,711 participants, low quality; more than 15 mm to 17 mm versus no treatment: 10.1 versus 3.4%, RR 2.77, 95% CI 1.95 to 3.93, 4 studies, 544,986 participants, very low quality; 20 mm or more versus no treatment: 10.2% versus 3.4%, RR 4.91, 95% CI 2.06 to 11.68, 3 studies, 543,750 participants, very low quality). The comparison group affected the magnitude of effect that was higher for external, followed by internal comparators and ultimately women with disease, but no treatment. Untreated women with disease and the pre-treatment pregnancies of the women who were treated subsequently had higher risk of overall prematurity than the general population (5.9% versus 5.6%, RR 1.24, 95% CI 1.14 to 1.34, 15 studies, 4,357,998 participants, very low quality).pPROM (6.1% versus 3.4%, RR 2.36, 95% CI 1.76 to 3.17, 21 studies, 477,011 participants, very low quality), low birth weight (7.9% versus 3.7%, RR 1.81, 95% CI 1.58 to 2.07, 30 studies, 1,348,206 participants, very low quality), NICU admission rate (12.6% versus 8.9%, RR 1.45, 95% CI 1.16 to 1.81, 8 studies, 2557 participants, low quality) and perinatal mortality (0.9% versus 0.7%, RR 1.51, 95% CI 1.13 to 2.03, 23 studies, 1,659,433 participants, low quality) were also increased after treatment. Women with CIN have a higher baseline risk for prematurity. Excisional and ablative treatment appears to further increases that risk. The frequency and severity of adverse sequelae increases with increasing cone depth and is higher for excision than it is for ablation. However, the results should be interpreted with caution as they were based on low or very low quality (GRADE assessment) observational studies, most of which were retrospective.

Twitter Demographics

The data shown below were collected from the profiles of 22 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 112 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 112 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 28 25%
Student > Master 18 16%
Student > Ph. D. Student 17 15%
Student > Bachelor 13 12%
Other 7 6%
Other 29 26%
Readers by discipline Count As %
Medicine and Dentistry 47 42%
Unspecified 34 30%
Nursing and Health Professions 9 8%
Agricultural and Biological Sciences 7 6%
Biochemistry, Genetics and Molecular Biology 5 4%
Other 10 9%

Attention Score in Context

This research output has an Altmetric Attention Score of 32. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 May 2018.
All research outputs
#503,800
of 13,190,464 outputs
Outputs from Cochrane database of systematic reviews
#1,583
of 10,519 outputs
Outputs of similar age
#22,087
of 311,440 outputs
Outputs of similar age from Cochrane database of systematic reviews
#46
of 249 outputs
Altmetric has tracked 13,190,464 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,440 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 249 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.