↓ Skip to main content

Closure methods for laparotomy incisions for preventing incisional hernias and other wound complications

Overview of attention for article published in Cochrane database of systematic reviews, November 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

policy
1 policy source
twitter
64 X users
facebook
2 Facebook pages
googleplus
1 Google+ user

Citations

dimensions_citation
98 Dimensions

Readers on

mendeley
336 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Closure methods for laparotomy incisions for preventing incisional hernias and other wound complications
Published in
Cochrane database of systematic reviews, November 2017
DOI 10.1002/14651858.cd005661.pub2
Pubmed ID
Authors

Sunil V Patel, David D Paskar, Richard L Nelson, Satyanarayana S Vedula, Scott R Steele

Abstract

Surgeons who perform laparotomy have a number of decisions to make regarding abdominal closure. Material and size of potential suture types varies widely. In addition, surgeons can choose to close the incision in anatomic layers or mass ('en masse'), as well as using either a continuous or interrupted suturing technique, of which there are different styles of each. There is ongoing debate as to which suturing techniques and suture materials are best for achieving definitive wound closure while minimising the risk of short- and long-term complications. The objectives of this review were to identify the best available suture techniques and suture materials for closure of the fascia following laparotomy incisions, by assessing the following comparisons: absorbable versus non-absorbable sutures; mass versus layered closure; continuous versus interrupted closure techniques; monofilament versus multifilament sutures; and slow absorbable versus fast absorbable sutures. Our objective was not to determine the single best combination of suture material and techniques, but to compare the individual components of abdominal closure. On 8 February 2017 we searched CENTRAL, MEDLINE, Embase, two trials registries, and Science Citation Index. There were no limitations based on language or date of publication. We searched the reference lists of all included studies to identify trials that our searches may have missed. We included randomised controlled trials (RCTs) that compared suture materials or closure techniques, or both, for fascial closure of laparotomy incisions. We excluded trials that compared only types of skin closures, peritoneal closures or use of retention sutures. We abstracted data and assessed the risk of bias for each trial. We calculated a summary risk ratio (RR) for the outcomes assessed in the review, all of which were dichotomous. We used random-effects modelling, based on the heterogeneity seen throughout the studies and analyses. We completed subgroup analysis planned a priori for each outcome, excluding studies where interventions being compared differed by more than one component, making it impossible to determine which variable impacted on the outcome, or the possibility of a synergistic effect. We completed sensitivity analysis, excluding trials with at least one trait with high risk of bias. We assessed the quality of evidence using the GRADEpro guidelines. Fifty-five RCTs with a total of 19,174 participants met the inclusion criteria and were included in the meta-analysis. Included studies were heterogeneous in the type of sutures used, methods of closure and patient population. Many of the included studies reported multiple comparisons.For our primary outcome, the proportion of participants who developed incisional hernia at one year or more of follow-up, we did not find evidence that suture absorption (absorbable versus non-absorbable sutures, RR 1.07, 95% CI 0.86 to 1.32, moderate-quality evidence; or slow versus fast absorbable sutures, RR 0.81, 95% CI 0.63 to 1.06, moderate-quality evidence), closure method (mass versus layered, RR 1.92, 95% CI 0.58 to 6.35, very low-quality evidence) or closure technique (continuous versus interrupted, RR 1.01, 95% CI 0.76 to 1.35, moderate-quality evidence) resulted in a difference in the risk of incisional hernia. We did, however, find evidence to suggest that monofilament sutures reduced the risk of incisional hernia when compared with multifilament sutures (RR 0.76, 95% CI 0.59 to 0.98, I(2) = 30%, moderate-quality evidence).For our secondary outcomes, we found that none of the interventions reduced the risk of wound infection, whether based on suture absorption (absorbable versus non-absorbable sutures, RR 0.99, 95% CI 0.84 to 1.17, moderate-quality evidence; or slow versus fast absorbable sutures, RR 1.16, 95% CI 0.85 to 1.57, moderate-quality evidence), closure method (mass versus layered, RR 0.93, 95% CI 0.67 to 1.30, low-quality evidence) or closure technique (continuous versus interrupted, RR 1.13, 95% CI 0.96 to 1.34, moderate-quality evidence).Similarily, none of the interventions reduced the risk of wound dehiscence whether based on suture absorption (absorbable versus non-absorbable sutures, RR 0.78, 95% CI 0.55 to 1.10, moderate-quality evidence; or slow versus fast absorbable sutures, RR 1.55, 95% CI 0.92 to 2.61, moderate-quality evidence), closure method (mass versus layered, RR 0.69, 95% CI 0.31 to 1.52, moderate-quality evidence) or closure technique (continuous versus interrupted, RR 1.21, 95% CI 0.90 to 1.64, moderate-quality evidence).Absorbable sutures, compared with non-absorbable sutures (RR 0.49, 95% CI 0.26 to 0.94, low-quality evidence) reduced the risk of sinus or fistula tract formation. None of the other comparisons showed a difference (slow versus fast absorbable sutures, RR 0.88, 95% CI 0.05 to 16.05, very low-quality evidence; mass versus layered, RR 0.49, 95% CI 0.15 to 1.62, low-quality evidence; continuous versus interrupted, RR 1.51, 95% CI 0.64 to 3.61, very low-quality evidence). Based on this moderate-quality body of evidence, monofilament sutures may reduce the risk of incisional hernia. Absorbable sutures may also reduce the risk of sinus or fistula tract formation, but this finding is based on low-quality evidence.We had serious concerns about the design or reporting of several of the 55 included trials. The comparator arms in many trials differed by more than one component, making it impossible to attribute differences between groups to any one component. In addition, the patient population included in many of the studies was very heterogeneous. Trials included both emergency and elective cases, different types of disease pathology (e.g. colon surgery, hepatobiliary surgery, etc.) or different types of incisions (e.g. midline, paramedian, subcostal).Consequently, larger, high-quality trials to further address this clinical challenge are warranted. Future studies should ensure that proper randomisation and allocation techniques are performed, wound assessors are blinded, and that the duration of follow-up is adequate. It is important that only one type of intervention is compared between groups. In addition, a homogeneous patient population would allow for a more accurate assessment of the interventions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 64 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 336 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 336 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 36 11%
Student > Master 31 9%
Researcher 30 9%
Student > Doctoral Student 28 8%
Other 23 7%
Other 61 18%
Unknown 127 38%
Readers by discipline Count As %
Medicine and Dentistry 133 40%
Nursing and Health Professions 23 7%
Social Sciences 10 3%
Biochemistry, Genetics and Molecular Biology 5 1%
Psychology 4 1%
Other 20 6%
Unknown 141 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 44. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 October 2021.
All research outputs
#954,237
of 25,708,267 outputs
Outputs from Cochrane database of systematic reviews
#1,862
of 13,139 outputs
Outputs of similar age
#19,841
of 341,710 outputs
Outputs of similar age from Cochrane database of systematic reviews
#49
of 272 outputs
Altmetric has tracked 25,708,267 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,139 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 33.8. This one has done well, scoring higher than 85% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,710 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 272 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.