↓ Skip to main content

Time versus energy minimization migration strategy varies with body size and season in long-distance migratory shorebirds

Overview of attention for article published in Movement Ecology, November 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

blogs
1 blog
twitter
6 tweeters

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
60 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Time versus energy minimization migration strategy varies with body size and season in long-distance migratory shorebirds
Published in
Movement Ecology, November 2017
DOI 10.1186/s40462-017-0114-0
Pubmed ID
Authors

Meijuan Zhao, Maureen Christie, Jonathan Coleman, Chris Hassell, Ken Gosbell, Simeon Lisovski, Clive Minton, Marcel Klaassen

Abstract

Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds. We tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next. During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis that larger species tend to use time-minimization strategies during both pre- and post-breeding migration. Our study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of their habitats during both seasons may thus be crucial for averting further population declines.

Twitter Demographics

The data shown below were collected from the profiles of 6 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 60 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 60 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 37%
Student > Master 10 17%
Student > Bachelor 8 13%
Researcher 4 7%
Student > Doctoral Student 3 5%
Other 4 7%
Unknown 9 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 33 55%
Environmental Science 10 17%
Biochemistry, Genetics and Molecular Biology 3 5%
Philosophy 1 2%
Psychology 1 2%
Other 0 0%
Unknown 12 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2019.
All research outputs
#1,733,600
of 14,331,597 outputs
Outputs from Movement Ecology
#60
of 182 outputs
Outputs of similar age
#57,587
of 318,867 outputs
Outputs of similar age from Movement Ecology
#10
of 25 outputs
Altmetric has tracked 14,331,597 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 182 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 19.1. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,867 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.