↓ Skip to main content

Bacteriophages

Overview of attention for book
Cover of 'Bacteriophages'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Basic Phage Mathematics
  3. Altmetric Badge
    Chapter 2 Analysis of Host-Takeover During SPO1 Infection of Bacillus subtilis
  4. Altmetric Badge
    Chapter 3 Practical Advice on the One-Step Growth Curve
  5. Altmetric Badge
    Chapter 4 Iron Chloride Flocculation of Bacteriophages from Seawater
  6. Altmetric Badge
    Chapter 5 Purification of Bacteriophages Using Anion-Exchange Chromatography
  7. Altmetric Badge
    Chapter 6 Encapsulation Strategies of Bacteriophage (Felix O1) for Oral Therapeutic Application
  8. Altmetric Badge
    Chapter 7 Encapsulation of Listeria Phage A511 by Alginate to Improve Its Thermal Stability
  9. Altmetric Badge
    Chapter 8 Application of a Virucidal Agent to Avoid Overestimation of Phage Kill During Phage Decontamination Assays on Ready-to-Eat Meats
  10. Altmetric Badge
    Chapter 9 Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes
  11. Altmetric Badge
    Chapter 10 Identification of DNA Base Modifications by Means of Pacific Biosciences RS Sequencing Technology
  12. Altmetric Badge
    Chapter 11 Analyzing Genome Termini of Bacteriophage Through High-Throughput Sequencing
  13. Altmetric Badge
    Chapter 12 Amplification for Whole Genome Sequencing of Bacteriophages from Single Isolated Plaques Using SISPA
  14. Altmetric Badge
    Chapter 13 Genome Sequencing of dsDNA-Containing Bacteriophages Directly from a Single Plaque
  15. Altmetric Badge
    Chapter 14 Preparing cDNA Libraries from Lytic Phage-Infected Cells for Whole Transcriptome Analysis by RNA-Seq
  16. Altmetric Badge
    Chapter 15 Essential Steps in Characterizing Bacteriophages: Biology, Taxonomy, and Genome Analysis
  17. Altmetric Badge
    Chapter 16 Annotation of Bacteriophage Genome Sequences Using DNA Master: An Overview
  18. Altmetric Badge
    Chapter 17 Phage Genome Annotation Using the RAST Pipeline
  19. Altmetric Badge
    Chapter 18 Visualization of Phage Genomic Data: Comparative Genomics and Publication-Quality Diagrams
  20. Altmetric Badge
    Chapter 19 Transposable Bacteriophages as Genetic Tools
  21. Altmetric Badge
    Chapter 20 Applications of the Bacteriophage Mu In Vitro Transposition Reaction and Genome Manipulation via Electroporation of DNA Transposition Complexes
  22. Altmetric Badge
    Chapter 21 Use of RP4::Mini-Mu for Gene Transfer
  23. Altmetric Badge
    Chapter 22 Muprints and Whole Genome Insertion Scans: Methods for Investigating Chromosome Accessibility and DNA Dynamics using Bacteriophage Mu
Attention for Chapter 9: Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

news
1 news outlet
twitter
15 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
72 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes
Chapter number 9
Book title
Bacteriophages
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7343-9_9
Pubmed ID
Book ISBNs
978-1-4939-7341-5, 978-1-4939-7343-9
Authors

Daniel A. Russell, Russell, Daniel A.

Abstract

Next-generation DNA sequencing (NGS) technologies have made generating genomic sequence for organisms of interest affordable and commonplace. However, NGS platforms and analysis software are generally tuned to be used on large and complex genomes or metagenomic samples. Determining the complete genome sequence of a single bacteriophage requires a somewhat different perspective, workflow, and sensitivity to the nature of phages. Because phage genomes consist of mostly coding regions (see Pope/Jacobs-Sera chapter), a very high standard should be adopted when completing these genomes so that the subsequent steps of annotation and analysis are not sabotaged by sequencing errors. While read quality and assembly algorithms have continued to improve, achieving this standard still requires a significant amount of human oversight and expertise. This chapter describes our workflow for sequencing, assembling, and finishing phage genomes to a high standard by the NGS platforms Illumina, Ion Torrent, and 454.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 72 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 72 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 18%
Researcher 11 15%
Student > Master 7 10%
Student > Bachelor 6 8%
Student > Postgraduate 4 6%
Other 14 19%
Unknown 17 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 23 32%
Agricultural and Biological Sciences 15 21%
Immunology and Microbiology 6 8%
Engineering 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 1%
Other 2 3%
Unknown 21 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 18. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 January 2022.
All research outputs
#1,793,902
of 23,498,099 outputs
Outputs from Methods in molecular biology
#242
of 13,368 outputs
Outputs of similar age
#43,277
of 444,852 outputs
Outputs of similar age from Methods in molecular biology
#12
of 1,485 outputs
Altmetric has tracked 23,498,099 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,368 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,852 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 1,485 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.