↓ Skip to main content

Body mass estimation from the skeleton: An evaluation of 11 methods

Overview of attention for article published in Forensic Science International, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Body mass estimation from the skeleton: An evaluation of 11 methods
Published in
Forensic Science International, December 2017
DOI 10.1016/j.forsciint.2017.10.026
Pubmed ID
Authors

Alizé Lacoste Jeanson, Frédéric Santos, Chiara Villa, Ján Dupej, Niels Lynnerup, Jaroslav Brůžek

Abstract

Estimating an individual body mass (BM) from the skeleton is a challenge for forensic anthropology. However, identifying someone's BMI (Body Mass Index) category, i.e. underweight, normal, overweight or obese, could contribute to identification. Individual BM is also known to influence the age-at-death estimation from the skeleton. Several methods are regularly used by both archaeologists and forensic practitioners to estimate individual BM. The most commonly used methods are based on femoral head breadth, or stature and bi-iliac breadth. However, those methods have been created from mean population BMs and are therefore meant to estimate the average BM of a population. Being that they are based on individual BM data and estimated femoral cortical areas, the newest published methods are supposed to be more accurate. We evaluated the accuracy and reliability of the most commonly used and most recent BM estimation methods (n=11) on a sample of 64 individuals. Both sexes and all BMI categories are represented, as well as a wide range of BM. Ages in this sample range from 20 to 87 years of age. Absolute and real differences between actual BM and estimated BM were assessed; they determined the accuracy for individual BM estimation and for average BM estimation of a population, respectively. The proportion of the sample whose estimated BM falls within ±10% and ±20% of their actual BM determines the reliability of the methods in our sample for, respectively, individual BM estimation and average BM of a population. The tested methods result in an absolute difference of 11kg-26kg±10kg with regards to prediction of individuals actual BM. The real differences are very variable from method to method, ranging from -14kg to 25kg. None of the tested methods is able to estimate BM of half of the sample within ±10% of their actual BM but most of them can estimate BM of more than half of the sample within ±20% of their actual BM. The errors increase with increasing BM, demonstrating a bias in all the methods. No bone variable tested correlated with BM. BMI categories were correctly predicted for less than 50% of the sample in most cases. In conclusion, our study demonstrates that the 11 methods tested are not suited for estimating individual BM or for predicting BMI categories. However, they are accurate and reliable enough for estimating the average BM of a population.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Master 5 16%
Student > Bachelor 4 13%
Researcher 4 13%
Other 3 9%
Other 4 13%
Unknown 6 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 19%
Arts and Humanities 5 16%
Medicine and Dentistry 3 9%
Social Sciences 3 9%
Physics and Astronomy 1 3%
Other 5 16%
Unknown 9 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 November 2017.
All research outputs
#9,368,719
of 15,462,668 outputs
Outputs from Forensic Science International
#1,905
of 3,176 outputs
Outputs of similar age
#214,076
of 409,934 outputs
Outputs of similar age from Forensic Science International
#17
of 48 outputs
Altmetric has tracked 15,462,668 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,176 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one is in the 39th percentile – i.e., 39% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 409,934 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 48 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.