↓ Skip to main content

The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group

Overview of attention for article published in Particle and Fibre Toxicology, November 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (61st percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
4 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The unrecognized occupational relevance of the interaction between engineered nanomaterials and the gastro-intestinal tract: a consensus paper from a multidisciplinary working group
Published in
Particle and Fibre Toxicology, November 2017
DOI 10.1186/s12989-017-0226-0
Pubmed ID
Authors

Antonio Pietroiusti, Enrico Bergamaschi, Marcello Campagna, Luisa Campagnolo, Giuseppe De Palma, Sergio Iavicoli, Veruscka Leso, Andrea Magrini, Michele Miragoli, Paola Pedata, Leonardo Palombi, Ivo Iavicoli

Abstract

There is a fundamental gap of knowledge on the health effects caused by the interaction of engineered nanomaterials (ENM) with the gastro-intestinal tract (GIT). This is partly due to the incomplete knowledge of the complex physical and chemical transformations that ENM undergo in the GIT, and partly to the widespread belief that GIT health effects of ENM are much less relevant than pulmonary effects. However, recent experimental findings, considering the role of new players in gut physiology (e.g. the microbiota), shed light on several outcomes of the interaction ENM/GIT. Along with this new information, there is growing direct and indirect evidence that not only ingested ENM, but also inhaled ENM may impact on the GIT. This fact, which may have relevant implications in occupational setting, has never been taken into consideration. This review paper summarizes the opinions and findings of a multidisciplinary team of experts, focusing on two main aspects of the issue: 1) ENM interactions within the GIT and their possible consequences, and 2) relevance of gastro-intestinal effects of inhaled ENMs. Under point 1, we analyzed how luminal gut-constituents, including mucus, may influence the adherence of ENM to cell surfaces in a size-dependent manner, and how intestinal permeability may be affected by different physico-chemical characteristics of ENM. Cytotoxic, oxidative, genotoxic and inflammatory effects on different GIT cells, as well as effects on microbiota, are also discussed. Concerning point 2, recent studies highlight the relevance of gastro-intestinal handling of inhaled ENM, showing significant excretion with feces of inhaled ENM and supporting the hypothesis that GIT should be considered an important target of extrapulmonary effects of inhaled ENM. In spite of recent insights on the relevance of the GIT as a target for toxic effects of nanoparticles, there is still a major gap in knowledge regarding the impact of the direct versus indirect oral exposure. This fact probably applies also to larger particles and dictates careful consideration in workers, who carry the highest risk of exposure to particulate matter.

Twitter Demographics

The data shown below were collected from the profiles of 4 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 23%
Student > Ph. D. Student 9 16%
Student > Master 7 13%
Student > Bachelor 4 7%
Other 4 7%
Other 9 16%
Unknown 10 18%
Readers by discipline Count As %
Medicine and Dentistry 7 13%
Biochemistry, Genetics and Molecular Biology 6 11%
Nursing and Health Professions 5 9%
Environmental Science 5 9%
Engineering 4 7%
Other 15 27%
Unknown 14 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2017.
All research outputs
#6,302,647
of 12,236,571 outputs
Outputs from Particle and Fibre Toxicology
#148
of 357 outputs
Outputs of similar age
#127,725
of 340,370 outputs
Outputs of similar age from Particle and Fibre Toxicology
#4
of 20 outputs
Altmetric has tracked 12,236,571 research outputs across all sources so far. This one is in the 48th percentile – i.e., 48% of other outputs scored the same or lower than it.
So far Altmetric has tracked 357 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.0. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,370 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 61% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.