↓ Skip to main content

The effect of osteopontin and osteopontin-derived peptides on preterm brain injury

Overview of attention for article published in Journal of Neuroinflammation, December 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The effect of osteopontin and osteopontin-derived peptides on preterm brain injury
Published in
Journal of Neuroinflammation, December 2014
DOI 10.1186/s12974-014-0197-0
Pubmed ID
Authors

Anna-Maj Albertsson, Xiaoli Zhang, Jianmei Leavenworth, Dan Bi, Syam Nair, Lili Qiao, Henrik Hagberg, Carina Mallard, Harvey Cantor, Xiaoyang Wang

Abstract

BackgroundOsteopontin (OPN) is a highly phosphorylated sialoprotein and a soluble cytokine that is widely expressed in a variety of tissues, including the brain. OPN and OPN-derived peptides have been suggested to have potential neuroprotective effects against ischemic brain injury, but their role in preterm brain injury is unknown.MethodsWe used a hypoxia-ischemia (HI)-induced preterm brain injury model in postnatal day 5 mice. OPN and OPN-derived peptides were given intracerebroventricularly and intranasally before HI. Brain injury was evaluated at 7 days after the insults.ResultsThere was a significant increase in endogenous OPN mRNA and OPN protein in the mouse brain after the induction of HI at postnatal day 5. Administration of full-length OPN protein and thrombin-cleaved OPN did not affect preterm brain injury. This was demonstrated with both intracerebroventricular and intranasal administration of OPN as well as in OPN-deficient mice. Interestingly, both N134¿153 and C154¿198 OPN-derived peptides increased the severity of brain injury in this HI-induced preterm brain injury model.ConclusionsThe neuroprotective effects of OPN are age-dependent, and, in contrast to the more mature brain, OPN-derived peptides potentiate injury in postnatal day 5 mice. Intranasal administration is an efficient way of delivering drugs to the central nervous system (CNS) in neonatal mice and is likely to be an easy and noninvasive method of drug delivery to the CNS in preterm infants.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Denmark 1 2%
Unknown 44 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 20%
Researcher 7 16%
Student > Bachelor 6 13%
Student > Master 3 7%
Student > Postgraduate 2 4%
Other 5 11%
Unknown 13 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 18%
Biochemistry, Genetics and Molecular Biology 6 13%
Medicine and Dentistry 3 7%
Immunology and Microbiology 2 4%
Business, Management and Accounting 1 2%
Other 8 18%
Unknown 17 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 December 2014.
All research outputs
#20,245,139
of 22,772,779 outputs
Outputs from Journal of Neuroinflammation
#2,300
of 2,622 outputs
Outputs of similar age
#302,268
of 360,895 outputs
Outputs of similar age from Journal of Neuroinflammation
#45
of 58 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,622 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,895 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.