↓ Skip to main content

Bacterial Multidrug Exporters

Overview of attention for book
Cover of 'Bacterial Multidrug Exporters'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins)
  3. Altmetric Badge
    Chapter 2 Crystallographic Analysis of Drug and Inhibitor-Binding Structure of RND-Type Multidrug Exporter AcrB in Physiologically Relevant Asymmetric Crystals
  4. Altmetric Badge
    Chapter 3 Crystallographic Analysis of MATE-Type Multidrug Exporter with Its Inhibitors
  5. Altmetric Badge
    Chapter 4 Crystallographic Analysis of the CusBA Heavy-Metal Efflux Complex of Escherichia coli
  6. Altmetric Badge
    Chapter 5 Purification of AcrAB-TolC Multidrug Efflux Pump for Cryo-EM Analysis
  7. Altmetric Badge
    Chapter 6 NMR Spectroscopy Approach to Study the Structure, Orientation, and Mechanism of the Multidrug Exporter EmrE
  8. Altmetric Badge
    Chapter 7 Generation of Conformation-Specific Antibody Fragments for Crystallization of the Multidrug Resistance Transporter MdfA
  9. Altmetric Badge
    Chapter 8 Biochemical Reconstitution and Characterization of Multicomponent Drug Efflux Transporters
  10. Altmetric Badge
    Chapter 9 Covalently Linked Trimers of RND (Resistance-Nodulation-Division) Efflux Transporters to Study Their Mechanism of Action: Escherichia coli AcrB Multidrug Exporter as an Example
  11. Altmetric Badge
    Chapter 10 Determining Ligand Path Through a Major Drug Transporter, AcrB, in Escherichia coli
  12. Altmetric Badge
    Chapter 11 Molecular Modeling of Multidrug Properties of Resistance Nodulation Division (RND) Transporters
  13. Altmetric Badge
    Chapter 12 A Transcriptomic Approach to Identify Novel Drug Efflux Pumps in Bacteria
  14. Altmetric Badge
    Chapter 13 Regulation of the Expression of Bacterial Multidrug Exporters by Two-Component Signal Transduction Systems
  15. Altmetric Badge
    Chapter 14 Study of the Expression of Bacterial Multidrug Efflux Pumps in Anaerobic Conditions
  16. Altmetric Badge
    Chapter 15 Identification of a Staphylococcus aureus Efflux Pump Regulator Using a DNA–Protein Affinity Technique
  17. Altmetric Badge
    Chapter 16 High-Throughput Flow Cytometry Screening of Multidrug Efflux Systems
  18. Altmetric Badge
    Chapter 17 Single-Molecule Analysis of Membrane Transporter Activity by Means of a Microsystem
  19. Altmetric Badge
    Chapter 18 Large-Scale Femtoliter Droplet Array for Single Cell Efflux Assay of Bacteria
  20. Altmetric Badge
    Chapter 19 Reconstitution and Transport Analysis of Eukaryotic Transporters in the Post-Genomic Era
Attention for Chapter 17: Single-Molecule Analysis of Membrane Transporter Activity by Means of a Microsystem
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
5 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Single-Molecule Analysis of Membrane Transporter Activity by Means of a Microsystem
Chapter number 17
Book title
Bacterial Multidrug Exporters
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7454-2_17
Pubmed ID
Book ISBNs
978-1-4939-7452-8, 978-1-4939-7454-2
Authors

Rikiya Watanabe, Naoki Soga, Shin-ya Ohdate, Hiroyuki Noji

Abstract

Emerging microtechnologies are aimed at developing a microsystem with densely packed array structure, i.e., an array with a femtoliter reaction chamber, for highly sensitive and quantitative biological assays. Here, we describe a novel femtoliter chamber array system (arrayed lipid bilayer chambers, ALBiC) that contains approximately a million femtoliter chambers, each sealed with a phospholipid bilayer membrane with extremely high efficiency (>90%). This novel platform enables detection of membrane transporter activity at the single-molecule level and thus expands the applicability of femtoliter chamber arrays to highly sensitive assays of transporters.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 5 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 5 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 2 40%
Professor 1 20%
Student > Bachelor 1 20%
Unknown 1 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 1 20%
Physics and Astronomy 1 20%
Chemistry 1 20%
Engineering 1 20%
Unknown 1 20%