↓ Skip to main content

Application of survival tree analysis for exploration of potential interactions between predictors of incident chronic kidney disease: a 15-year follow-up study

Overview of attention for article published in Journal of Translational Medicine, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Application of survival tree analysis for exploration of potential interactions between predictors of incident chronic kidney disease: a 15-year follow-up study
Published in
Journal of Translational Medicine, November 2017
DOI 10.1186/s12967-017-1346-x
Pubmed ID
Authors

Azra Ramezankhani, Maryam Tohidi, Fereidoun Azizi, Farzad Hadaegh

Abstract

Chronic kidney disease (CKD) is a growing public health challenges worldwide. Various studies have investigated risk factors of incident CKD; however, a very few studies examined interaction between these risk factors. In an attempt to clarify the potential interactions between risk factors of CKD, we performed survival tree analysis. A total of 8238 participants (46.1% men) aged > 20 years without CKD at baseline [(1999-2001) and (2002-2005)], were followed until 2014. The first occurrence of CKD, defined as the estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2, was set as the main outcome. Multivariable Cox proportional hazard (Cox PH) regression was used to identify significant independent predictors of CKD; moreover, survival tree analysis was performed to gain further insight into the potential interactions between predictors. The crude incidence rates of CKD were 20.2 and 35.2 per 1000 person-years in men and women, respectively. The Cox PH identified the main effect of significant predictors of CKD incidence in men and women. In addition, using a limited number of predictors, survival trees identified 12 and 10 subgroups among men and women, respectively, with different survival probability. Accordingly, a group of men with eGFR > 74 ml/min/1.73 m2, age ≤ 46 years, low level of physical activity, waist circumference ≤ 100 cm and FPG ≤ 4.7 mmol/l had the lowest risk of CKD incidence; while men with eGFR ≤ 63.4 ml/min/1.73 m2, age > 50 years had the highest risk for CKD compared to men in the lowest risk group [hazard ratio (HR), 70.68 (34.57-144.52)]. Also, a group of women aged ≤ 45 years and eGFR > 83.5 ml/min/1.73 m2 had the lowest risk; while women with age > 48 years and eGFR ≤ 69 ml/min/1.73 m2 had the highest risk compared to low risk group [HR 27.25 (19.88-37.34)]. In this post hoc analysis, we found the independent predictors of CKD using Cox PH; furthermore, by applying survival tree analysis we identified several numbers of homogeneous subgroups with different risk for incidence of CKD. Our study suggests that two methods can be used simultaneously to provide new insights for intervention programs and improve clinical decision making.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 13%
Student > Master 6 13%
Student > Bachelor 4 9%
Student > Ph. D. Student 4 9%
Student > Postgraduate 4 9%
Other 8 18%
Unknown 13 29%
Readers by discipline Count As %
Medicine and Dentistry 9 20%
Biochemistry, Genetics and Molecular Biology 4 9%
Engineering 3 7%
Nursing and Health Professions 2 4%
Computer Science 2 4%
Other 7 16%
Unknown 18 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2017.
All research outputs
#15,484,498
of 23,009,818 outputs
Outputs from Journal of Translational Medicine
#2,258
of 4,024 outputs
Outputs of similar age
#265,682
of 438,539 outputs
Outputs of similar age from Journal of Translational Medicine
#39
of 64 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,024 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,539 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.