↓ Skip to main content

Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics

Overview of attention for article published in BMC Pulmonary Medicine, December 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
5 X users

Citations

dimensions_citation
77 Dimensions

Readers on

mendeley
74 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics
Published in
BMC Pulmonary Medicine, December 2017
DOI 10.1186/s12890-017-0513-4
Pubmed ID
Authors

Feng Yan, Zhensong Wen, Rui Wang, Wenling Luo, Yufeng Du, Wenjun Wang, Xianyang Chen

Abstract

Idiopathic pulmonary fibrosis (IPF) is an irreversible interstitial pulmonary disease featured by high mortality, chronic and progressive course, and poor prognosis with unclear etiology. Currently, more studies have been focusing on identifying biomarkers to predict the progression of IPF, such as genes, proteins, and lipids. Lipids comprise diverse classes of molecules and play a critical role in cellular energy storage, structure, and signaling. The role of lipids in respiratory diseases, including cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD) has been investigated intensely in the recent years. The human serum lipid profiles in IPF patients however, have not been thoroughly understood and it will be very helpful if there are available molecular biomarkers, which can be used to monitor the disease progression or provide prognostic information for IPF disease. In this study, we performed the ultraperformance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) to detect the lipid variation and identify biomarker in plasma of IPF patients. The plasma were from 22 IPF patients before received treatment and 18 controls. A total of 507 individual blood lipid species were determined with lipidomics from the 40 plasma samples including 20 types of fatty acid, 159 types of glycerolipids, 221 types of glycerophospholipids, 47 types of sphingolipids, 46 types of sterol lipids, 7 types of prenol lipids, 3 types of saccharolipids, and 4 types of polyketides. By comparing the variations in the lipid metabolite levels in IPF patients, a total of 62 unique lipids were identified by statistical analysis including 24 kinds of glycerophoslipids, 30 kinds of glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingolipids and 1 kind of fatty acids. Finally, 6 out of 62 discriminating lipids were selected as the potential biomarkers, which are able to differentiate between IPF disease and controls with ROC analysis. Our results provided vital information regarding lipid metabolism in IPF patients and more importantly, a few potentially promising biomarkers were firstly identified which may have a predictive role in monitoring and diagnosing IPF disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 74 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 74 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 26%
Student > Ph. D. Student 14 19%
Other 9 12%
Student > Master 9 12%
Student > Doctoral Student 4 5%
Other 11 15%
Unknown 8 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 23%
Medicine and Dentistry 13 18%
Agricultural and Biological Sciences 8 11%
Nursing and Health Professions 4 5%
Pharmacology, Toxicology and Pharmaceutical Science 4 5%
Other 11 15%
Unknown 17 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 July 2018.
All research outputs
#6,927,430
of 23,011,300 outputs
Outputs from BMC Pulmonary Medicine
#512
of 1,950 outputs
Outputs of similar age
#137,368
of 439,982 outputs
Outputs of similar age from BMC Pulmonary Medicine
#26
of 87 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one has received more attention than most of these and is in the 69th percentile.
So far Altmetric has tracked 1,950 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,982 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 87 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.