↓ Skip to main content

DNA Methylation Protocols

Overview of attention for book
Cover of 'DNA Methylation Protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation
  3. Altmetric Badge
    Chapter 2 Considerations for Design and Analysis of DNA Methylation Studies
  4. Altmetric Badge
    Chapter 3 Quantification of Global DNA Methylation Levels by Mass Spectrometry
  5. Altmetric Badge
    Chapter 4 Antibody-Based Detection of Global Nuclear DNA Methylation in Cells, Tissue Sections, and Mammalian Embryos
  6. Altmetric Badge
    Chapter 5 Whole-Genome Bisulfite Sequencing Using the Ovation® Ultralow Methyl-Seq Protocol
  7. Altmetric Badge
    Chapter 6 Tagmentation-Based Library Preparation for Low DNA Input Whole Genome Bisulfite Sequencing
  8. Altmetric Badge
    Chapter 7 Post-Bisulfite Adaptor Tagging for PCR-Free Whole-Genome Bisulfite Sequencing
  9. Altmetric Badge
    Chapter 8 Multiplexed Reduced Representation Bisulfite Sequencing with Magnetic Bead Fragment Size Selection
  10. Altmetric Badge
    Chapter 9 Low Input Whole-Genome Bisulfite Sequencing Using a Post-Bisulfite Adapter Tagging Approach
  11. Altmetric Badge
    Chapter 10 Methyl-CpG-Binding Domain Sequencing: MBD-seq
  12. Altmetric Badge
    Chapter 11 The HELP-Based DNA Methylation Assays
  13. Altmetric Badge
    Chapter 12 Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq
  14. Altmetric Badge
    Chapter 13 Digital Restriction Enzyme Analysis of Methylation (DREAM)
  15. Altmetric Badge
    Chapter 14 Nucleosome Occupancy and Methylome Sequencing (NOMe-seq)
  16. Altmetric Badge
    Chapter 15 Bisulphite Sequencing of Chromatin Immunoprecipitated DNA (BisChIP-seq)
  17. Altmetric Badge
    Chapter 16 A Guide to Illumina BeadChip Data Analysis
  18. Altmetric Badge
    Chapter 17 Microdroplet PCR for Highly Multiplexed Targeted Bisulfite Sequencing
  19. Altmetric Badge
    Chapter 18 Multiplexed DNA Methylation Analysis of Target Regions Using Microfluidics (Fluidigm)
  20. Altmetric Badge
    Chapter 19 Large-Scale Targeted DNA Methylation Analysis Using Bisulfite Padlock Probes
  21. Altmetric Badge
    Chapter 20 Targeted Bisulfite Sequencing Using the SeqCap Epi Enrichment System
  22. Altmetric Badge
    Chapter 21 Multiplexed and Sensitive DNA Methylation Testing Using Methylation-Sensitive Restriction Enzymes “MSRE-qPCR”
  23. Altmetric Badge
    Chapter 22 Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing®
  24. Altmetric Badge
    Chapter 23 Methylation-Specific PCR
  25. Altmetric Badge
    Chapter 24 Quantitation of DNA Methylation by Quantitative Multiplex Methylation-Specific PCR (QM-MSP) Assay
  26. Altmetric Badge
    Chapter 25 MethyLight and Digital MethyLight
  27. Altmetric Badge
    Chapter 26 Quantitative Region-Specific DNA Methylation Analysis by the EpiTYPER™ Technology
  28. Altmetric Badge
    Chapter 27 Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA)
  29. Altmetric Badge
    Chapter 28 Methylation-Sensitive High Resolution Melting (MS-HRM)
  30. Altmetric Badge
    Chapter 29 Hairpin Bisulfite Sequencing: Synchronous Methylation Analysis on Complementary DNA Strands of Individual Chromosomes
  31. Altmetric Badge
    Chapter 30 Helper-Dependent Chain Reaction (HDCR) for Selective Amplification of Methylated DNA Sequences
  32. Altmetric Badge
    Chapter 31 DNA Methylation Analysis from Blood Spots: Increasing Yield and Quality for Genome-Wide and Locus-Specific Methylation Analysis
  33. Altmetric Badge
    Chapter 32 DNA Methylation Analysis of Free-Circulating DNA in Body Fluids
  34. Altmetric Badge
    Chapter 33 Tet-Assisted Bisulfite Sequencing (TAB-seq)
  35. Altmetric Badge
    Chapter 34 Multiplexing for Oxidative Bisulfite Sequencing (oxBS-seq)
  36. Altmetric Badge
    Chapter 35 Affinity-Based Enrichment Techniques for the Genome-Wide Analysis of 5-Hydroxymethylcytosine
Attention for Chapter 20: Targeted Bisulfite Sequencing Using the SeqCap Epi Enrichment System
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Targeted Bisulfite Sequencing Using the SeqCap Epi Enrichment System
Chapter number 20
Book title
DNA Methylation Protocols
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7481-8_20
Pubmed ID
Book ISBNs
978-1-4939-7479-5, 978-1-4939-7481-8
Authors

Jennifer Wendt, Heidi Rosenbaum, Todd A. Richmond, Jeffrey A. Jeddeloh, Daniel L. Burgess

Abstract

Cytosine methylation has been shown to have a role in a host of biological processes. In mammalian biology these include stem cell differentiation, embryonic development, genomic imprinting, inflammation, and silencing of transposable elements. Given the central importance of these processes, it is not surprising to find aberrant cytosine methylation patterns associated with many disorders in humans, including cancer, cardiovascular disease, and neurological disease. While whole genome shotgun bisulfite sequencing (WGBS) has recently become feasible, generating high sequence coverage data for the entire genome is expensive, both in terms of money and analysis time, when generally only a small subset of the genome is of interest to most researchers. This report details a procedure for the targeted enrichment of bisulfite treated DNA via SeqCap Epi, allowing high resolution focus of next generation sequencing onto a subset of the genome for high resolution cytosine methylation analysis. Regions ranging in size from only a few kb up to over 200 Mb may be targeted, including the use of the SeqCap Epi CpGiant design which is designed to target 5.5 million CpGs in the human genome. Finally, multiple samples may be multiplexed and sequenced together to provide an inexpensive method of generating methylation data for a large number of samples in a high throughput fashion.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 25%
Student > Master 4 14%
Student > Ph. D. Student 3 11%
Student > Bachelor 2 7%
Other 2 7%
Other 4 14%
Unknown 6 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 36%
Agricultural and Biological Sciences 5 18%
Neuroscience 2 7%
Environmental Science 1 4%
Nursing and Health Professions 1 4%
Other 3 11%
Unknown 6 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2017.
All research outputs
#15,706,682
of 23,341,064 outputs
Outputs from Methods in molecular biology
#5,497
of 13,337 outputs
Outputs of similar age
#271,756
of 444,162 outputs
Outputs of similar age from Methods in molecular biology
#600
of 1,502 outputs
Altmetric has tracked 23,341,064 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,337 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,162 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,502 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.