↓ Skip to main content

Sulfide and methane production in sewer sediments

Overview of attention for article published in Water Research, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Sulfide and methane production in sewer sediments
Published in
Water Research, March 2015
DOI 10.1016/j.watres.2014.12.019
Pubmed ID
Authors

Yiwen Liu, Bing-Jie Ni, Ramon Ganigué, Ursula Werner, Keshab R. Sharma, Zhiguo Yuan

Abstract

Recent studies have demonstrated significant sulfide and methane production by sewer biofilms, particularly in rising mains. Sewer sediments in gravity sewers are also biologically active; however, their contribution to biological transformations in sewers is poorly understood at present. In this study, sediments collected from a gravity sewer were cultivated in a laboratory reactor fed with real wastewater for more than one year to obtain intact sediments. Batch test results show significant sulfide production with an average rate of 9.20 ± 0.39 g S/m(2)·d from the sediments, which is significantly higher than the areal rate of sewer biofilms. In contrast, the average methane production rate is 1.56 ± 0.14 g CH4/m(2)·d at 20 °C, which is comparable to the areal rate of sewer biofilms. These results clearly show that the contributions of sewer sediments to sulfide and methane production cannot be ignored when evaluating sewer emissions. Microsensor and pore water measurements of sulfide, sulfate and methane in the sediments, microbial profiling along the depth of the sediments and mathematical modelling reveal that sulfide production takes place near the sediment surface due to the limited penetration of sulfate. In comparison, methane production occurs in a much deeper zone below the surface likely due to the better penetration of soluble organic carbon. Modelling results illustrate the dependency of sulfide and methane productions on the bulk sulfate and soluble organic carbon concentrations can be well described with half-order kinetics.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 2%
Switzerland 1 2%
Poland 1 2%
Unknown 42 93%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 24%
Student > Master 8 18%
Unspecified 7 16%
Other 5 11%
Student > Bachelor 3 7%
Other 11 24%
Readers by discipline Count As %
Engineering 13 29%
Environmental Science 13 29%
Unspecified 10 22%
Agricultural and Biological Sciences 4 9%
Computer Science 2 4%
Other 3 7%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2015.
All research outputs
#7,366,678
of 12,269,726 outputs
Outputs from Water Research
#3,530
of 5,590 outputs
Outputs of similar age
#128,251
of 268,710 outputs
Outputs of similar age from Water Research
#34
of 78 outputs
Altmetric has tracked 12,269,726 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,590 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 268,710 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 78 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.