↓ Skip to main content

Mining significant high utility gene regulation sequential patterns

Overview of attention for article published in BMC Systems Biology, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
18 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mining significant high utility gene regulation sequential patterns
Published in
BMC Systems Biology, December 2017
DOI 10.1186/s12918-017-0475-4
Pubmed ID
Authors

Morteza Zihayat, Heidar Davoudi, Aijun An

Abstract

Mining frequent gene regulation sequential patterns in time course microarray datasets is an important mining task in bioinformatics. Although finding such patterns are of paramount important for studying a disease, most existing work do not consider gene-disease association during gene regulation sequential pattern discovery. Moreover, they consider more absent/existence effects of genes during the mining process than taking the degrees of genes expression into account. Consequently, such techniques discover too many patterns which may not represent important information to biologists to investigate the relationships between the disease and underlying reasons hidden in gene regulation sequences. We propose a utility model by considering both the gene-disease association score and their degrees of expression levels under a biological investigation. We propose an efficient method called Top-HUGS, for discoverying significant high utility gene regulation sequential patterns from a time-course microarray dataset. In this study, the proposed methods were evaluated on a publicly available time course microarray dataset. The experimental results show higher accuracies compared to the baseline methods. Our proposed methods found that several new gene regulation sequential patterns involved in such patterns were useful for biologists and provided further insights into the mechanisms underpinning biological processes. To effectively work with the proposed method, a web interface is developed to our system using Java. To the best of our knowledge, this is the first demonstration for significant high utility gene regulation sequential pattern discovery.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 18 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 18 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 17%
Professor 3 17%
Other 1 6%
Researcher 1 6%
Professor > Associate Professor 1 6%
Other 0 0%
Unknown 9 50%
Readers by discipline Count As %
Computer Science 6 33%
Environmental Science 1 6%
Business, Management and Accounting 1 6%
Agricultural and Biological Sciences 1 6%
Unknown 9 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 December 2017.
All research outputs
#20,454,971
of 23,011,300 outputs
Outputs from BMC Systems Biology
#1,011
of 1,144 outputs
Outputs of similar age
#374,712
of 439,309 outputs
Outputs of similar age from BMC Systems Biology
#32
of 40 outputs
Altmetric has tracked 23,011,300 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,144 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,309 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.