↓ Skip to main content

mRNA Decay

Overview of attention for book
Cover of 'mRNA Decay'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 5′-Bromouridine IP Chase (BRIC)-Seq to Determine RNA Half-Lives
  3. Altmetric Badge
    Chapter 2 Determining mRNA Decay Rates Using RNA Approach to Equilibrium Sequencing (RATE-Seq)
  4. Altmetric Badge
    Chapter 3 Metabolic Labeling of Newly Synthesized RNA with 4sU to in Parallel Assess RNA Transcription and Decay
  5. Altmetric Badge
    Chapter 4 Measuring mRNA Decay in Budding Yeast Using Single Molecule FISH
  6. Altmetric Badge
    Chapter 5 PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins
  7. Altmetric Badge
    Chapter 6 Characterizing mRNA Sequence Motifs in the 3′-UTR Using GFP Reporter Constructs
  8. Altmetric Badge
    Chapter 7 iCLIP of the PIWI Protein Aubergine in Drosophila Embryos
  9. Altmetric Badge
    Chapter 8 Integration of ENCODE RNAseq and eCLIP Data Sets
  10. Altmetric Badge
    Chapter 9 Identifying miRNA Targets Using AGO-RIPseq
  11. Altmetric Badge
    Chapter 10 Integrated Analysis of miRNA and mRNA Expression Profiles to Identify miRNA Targets
  12. Altmetric Badge
    Chapter 11 Identifying RISC Components Using Ago2 Immunoprecipitation and Mass Spectrometry
  13. Altmetric Badge
    Chapter 12 Using Tet-Off Cells and RNAi Knockdown to Assay mRNA Decay
  14. Altmetric Badge
    Chapter 13 Identifying Cellular Nonsense-Mediated mRNA Decay (NMD) Targets: Immunoprecipitation of Phosphorylated UPF1 Followed by RNA Sequencing (p-UPF1 RIP−Seq)
  15. Altmetric Badge
    Chapter 14 Generation of Cell Lines Stably Expressing a Fluorescent Reporter of Nonsense-Mediated mRNA Decay Activity
  16. Altmetric Badge
    Chapter 15 Reactivation Assay to Identify Direct Targets of the Nonsense-Mediated mRNA Decay Pathway in Drosophila
  17. Altmetric Badge
    Chapter 16 Studying Nonsense-Mediated mRNA Decay in Mammalian Cells Using a Multicolored Bioluminescence-Based Reporter System
Attention for Chapter 8: Integration of ENCODE RNAseq and eCLIP Data Sets
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
9 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Integration of ENCODE RNAseq and eCLIP Data Sets
Chapter number 8
Book title
Methods in Molecular Biology
Published in
Methods in molecular biology, December 2017
DOI 10.1007/978-1-4939-7540-2_8
Pubmed ID
Book ISBNs
978-1-4939-7539-6, 978-1-4939-7540-2
Authors

Boucas, Jorge, Jorge Boucas

Abstract

During the last decade, the study of mRNA decay has largely benefited from an increasing number of high-throughput assays that emerged from developments in next generation sequencing (NGS) technologies as well as mass spectrometry. While assay-specific data analysis is often reported and software made available many researchers struggle with the overwhelming challenge of integrating data from diverse assays, different sources, and of different formats.We here use Python, R, and bash to analyze and integrate RNAseq and eCLIP data publicly available from ENCODE. Annotation is performed with biomart, motif analysis with MEME and finally a functional enrichment analysis using DAVID. This analysis is centered on KHSRP eCLIP data from K562 cell as well as RNAseq data from KHSRP knockdown and respective mock controls.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 22%
Student > Master 2 22%
Student > Ph. D. Student 1 11%
Researcher 1 11%
Professor > Associate Professor 1 11%
Other 0 0%
Unknown 2 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 67%
Medicine and Dentistry 1 11%
Engineering 1 11%
Unknown 1 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2018.
All research outputs
#19,343,557
of 24,666,614 outputs
Outputs from Methods in molecular biology
#7,957
of 13,875 outputs
Outputs of similar age
#319,457
of 449,519 outputs
Outputs of similar age from Methods in molecular biology
#884
of 1,511 outputs
Altmetric has tracked 24,666,614 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,875 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,519 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,511 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.