↓ Skip to main content

Interventions for managing taste disturbances

Overview of attention for article published in Cochrane database of systematic reviews, December 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

blogs
2 blogs
twitter
56 X users
facebook
3 Facebook pages
wikipedia
2 Wikipedia pages
googleplus
1 Google+ user

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
453 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interventions for managing taste disturbances
Published in
Cochrane database of systematic reviews, December 2017
DOI 10.1002/14651858.cd010470.pub3
Pubmed ID
Authors

Sumanth Kumbargere Nagraj, Renjith P George, Naresh Shetty, David Levenson, Debra M Ferraiolo, Ashish Shrestha

Abstract

The sense of taste is very much essential to the overall health of an individual. It is a necessary component to enjoy one's food, which in turn provides nutrition to an individual. Any disturbance in taste perception can hamper quality of life in such patients by influencing their appetite, body weight and psychological well-being. Taste disorders have been treated using different modalities of treatment and there is no consensus for the best intervention. Hence this Cochrane Review was undertaken. This is an update of the Cochrane Review first published in November 2014. To assess the effects of interventions for the management of patients with taste disturbances. Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 4 July 2017); the Cochrane Central Register of Controlled Trials (CENTRAL; 2017 Issue 6) in the Cochrane Library (searched 4 July 2017); MEDLINE Ovid (1946 to 4 July 2017); Embase Ovid (1980 to 4 July 2017); CINAHL EBSCO (1937 to 4 July 2017); and AMED Ovid (1985 to 4 July 2017). The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for trials. Abstracts from scientific meetings and conferences were searched on 25 September 2017. No restrictions were placed on the language or date of publication when searching the electronic databases. We included all randomised controlled trials (RCTs) comparing any pharmacological agent with a control intervention or any non-pharmacological agent with a control intervention. We also included cross-over trials in the review. Two pairs of review authors independently, and in duplicate, assessed the quality of trials and extracted data. Wherever possible, we contacted trial authors for additional information. We collected adverse events information from the trials. We included 10 trials (581 participants), nine of which we were able to include in the quantitative analyses (566 participants). We assessed three trials (30%) as having a low risk of bias, four trials (40%) at high risk of bias and three trials (30%) as having an unclear risk of bias. We only included studies on taste disorders in this review that were either idiopathic, or resulting from zinc deficiency or chronic renal failure.Of these, nine trials with 544 people compared zinc supplements to placebo for patients with taste disorders. The participants in two trials were children and adolescents with respective mean ages of 10 and 11.2 years and the other seven trials had adult participants. Out of these nine, two trials assessed the patient-reported outcome for improvement in taste acuity using zinc supplements (risk ratio (RR) 1.40, 95% confidence interval (CI) 0.94 to 2.09; 119 participants, very low-quality evidence). We meta-analysed for taste acuity improvement using objective outcome (continuous data) in idiopathic and zinc-deficient taste disorder patients (standardised mean difference (SMD) 0.44, 95% CI 0.23 to 0.65; 366 participants, three trials, very low-quality evidence). We also analysed one cross-over trial separately using the first half of the results for taste detection (mean difference (MD) 2.50, 95% CI 0.93 to 4.07; 14 participants, very low-quality evidence), and taste recognition (MD 3.00, 95% CI 0.66 to 5.34; 14 participants, very low-quality evidence). We meta-analysed taste acuity improvement using objective outcome (dichotomous data) in idiopathic and zinc-deficient taste disorder patients (RR 1.42, 95% 1.09 to 1.84; 292 participants, two trials, very low-quality evidence). Out of the nine trials using zinc supplementation, four reported adverse events like eczema, nausea, abdominal pain, diarrhoea, constipation, decrease in blood iron, increase in blood alkaline phosphatase, and minor increase in blood triglycerides.One trial tested taste discrimination using acupuncture (MD 2.80, 95% CI -1.18 to 6.78; 37 participants, very low-quality evidence). No adverse events were reported in the acupuncture trial.None of the included trials could be included in the meta-analysis for health-related quality of life in taste disorder patients. We found very low-quality evidence that was insufficient to conclude on the role of zinc supplements to improve taste acuity reported by patients and very low-quality evidence that zinc supplements improve taste acuity in patients with zinc deficiency/idiopathic taste disorders. We did not find any evidence to conclude the role of zinc supplements for improving taste discrimination, or any evidence addressing health-related quality of life due to taste disorders.We found very low-quality evidence that is not sufficient to conclude on the role of acupuncture for improving taste discrimination in cases of idiopathic dysgeusia (distortion of taste) and hypogeusia (reduced ability to taste). We were unable to draw any conclusions regarding the superiority of zinc supplements or acupuncture as none of the trials compared these interventions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 56 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 453 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 453 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 61 13%
Student > Bachelor 44 10%
Researcher 36 8%
Student > Ph. D. Student 32 7%
Other 26 6%
Other 77 17%
Unknown 177 39%
Readers by discipline Count As %
Medicine and Dentistry 122 27%
Nursing and Health Professions 47 10%
Psychology 18 4%
Social Sciences 11 2%
Agricultural and Biological Sciences 10 2%
Other 46 10%
Unknown 199 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 50. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 November 2022.
All research outputs
#864,323
of 25,837,817 outputs
Outputs from Cochrane database of systematic reviews
#1,666
of 13,168 outputs
Outputs of similar age
#19,418
of 452,903 outputs
Outputs of similar age from Cochrane database of systematic reviews
#44
of 247 outputs
Altmetric has tracked 25,837,817 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,168 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.9. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 452,903 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 247 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.