↓ Skip to main content

Respiratory muscle training for multiple sclerosis

Overview of attention for article published in Cochrane database of systematic reviews, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
12 X users
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
365 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Respiratory muscle training for multiple sclerosis
Published in
Cochrane database of systematic reviews, December 2017
DOI 10.1002/14651858.cd009424.pub2
Pubmed ID
Authors

Marc B Rietberg, Janne M Veerbeek, Rik Gosselink, Gert Kwakkel, Erwin EH van Wegen

Abstract

Multiple sclerosis (MS) is a chronic disease of the central nervous system, affecting approximately 2.5 million people worldwide. People with MS may experience limitations in muscular strength and endurance - including the respiratory muscles, affecting functional performance and exercise capacity. Respiratory muscle weakness can also lead to diminished performance on coughing, which may result in (aspiration) pneumonia or even acute ventilatory failure, complications that frequently cause death in MS. Training of the respiratory muscles might improve respiratory function and cough efficacy. To assess the effects of respiratory muscle training versus any other type of training or no training for respiratory muscle function, pulmonary function and clinical outcomes in people with MS. We searched the Trials Register of the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group (3 February 2017), which contains trials from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, LILACS and the trial registry databases ClinicalTrials.gov and WHO International Clinical Trials Registry Platform. Two authors independently screened records yielded by the search, handsearched reference lists of review articles and primary studies, checked trial registers for protocols, and contacted experts in the field to identify further published or unpublished trials. We included randomized controlled trials (RCTs) that investigated the efficacy of respiratory muscle training versus any control in people with MS. One reviewer extracted study characteristics and study data from included RCTs, and two other reviewers independently cross-checked all extracted data. Two review authors independently assessed risk of bias with the Cochrane 'Risk of bias' assessment tool. When at least two RCTs provided data for the same type of outcome, we performed meta-analyses. We assessed the certainty of the evidence according to the GRADE approach. We included six RCTs, comprising 195 participants with MS. Two RCTs investigated inspiratory muscle training with a threshold device; three RCTs, expiratory muscle training with a threshold device; and one RCT, regular breathing exercises. Eighteen participants (˜ 10%) dropped out; trials reported no serious adverse events.We pooled and analyzed data of 5 trials (N=137) for both inspiratory and expiratory muscle training, using a fixed-effect model for all but one outcome. Compared to no active control, meta-analysis showed that inspiratory muscle training resulted in no significant difference in maximal inspiratory pressure (mean difference (MD) 6.50 cmH2O, 95% confidence interval (CI) -7.39 to 20.38, P = 0.36, I2 = 0%) or maximal expiratory pressure (MD -8.22 cmH2O, 95% CI -26.20 to 9.77, P = 0.37, I2 = 0%), but there was a significant benefit on the predicted maximal inspiratory pressure (MD 20.92 cmH2O, 95% CI 6.03 to 35.81, P = 0.006, I2 = 18%). Meta-analysis with a random-effects model failed to show a significant difference in predicted maximal expiratory pressure (MD 5.86 cmH2O, 95% CI -10.63 to 22.35, P = 0.49, I2 = 55%). These studies did not report outcomes for health-related quality of life.Three RCTS compared expiratory muscle training versus no active control or sham training. Under a fixed-effect model, meta-analysis failed to show a significant difference between groups with regard to maximal expiratory pressure (MD 8.33 cmH2O, 95% CI -0.93 to 17.59, P = 0.18, I2 = 42%) or maximal inspiratory pressure (MD 3.54 cmH2O, 95% CI -5.04 to 12.12, P = 0.42, I2 = 41%). One trial assessed quality of life, finding no differences between groups.For all predetermined secondary outcomes, such as forced expiratory volume, forced vital capacity and peak flow pooling was not possible. However, two trials on inspiratory muscle training assessed fatigue using the Fatigue Severity Scale (range of scores 0-56 ), finding no difference between groups (MD, -0.28 points, 95% CI-0.95 to 0.39, P = 0.42, I2 = 0%). Due to the low number of studies included, we could not perform cumulative meta-analysis or subgroup analyses. It was not possible to perform a meta-analysis for adverse events, no serious adverse were mentioned in any of the included trials.The quality of evidence was low for all outcomes because of limitations in design and implementation as well as imprecision of results. This review provides low-quality evidence that resistive inspiratory muscle training with a resistive threshold device is moderately effective postintervention for improving predicted maximal inspiratory pressure in people with mild to moderate MS, whereas expiratory muscle training showed no significant effects. The sustainability of the favourable effect of inspiratory muscle training is unclear, as is the impact of the observed effects on quality of life.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 365 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 365 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 51 14%
Student > Bachelor 42 12%
Researcher 29 8%
Student > Ph. D. Student 26 7%
Other 15 4%
Other 55 15%
Unknown 147 40%
Readers by discipline Count As %
Nursing and Health Professions 73 20%
Medicine and Dentistry 63 17%
Sports and Recreations 12 3%
Biochemistry, Genetics and Molecular Biology 10 3%
Psychology 10 3%
Other 40 11%
Unknown 157 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 April 2020.
All research outputs
#3,250,137
of 25,728,855 outputs
Outputs from Cochrane database of systematic reviews
#5,967
of 13,136 outputs
Outputs of similar age
#67,715
of 449,985 outputs
Outputs of similar age from Cochrane database of systematic reviews
#128
of 246 outputs
Altmetric has tracked 25,728,855 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,136 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 35.8. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,985 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 246 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.