↓ Skip to main content

The Surfaceome

Overview of attention for book
Cover of 'The Surfaceome'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Surfaceome Analysis Protocol for the Identification of Novel Bordetella pertussis Antigens
  3. Altmetric Badge
    Chapter 2 “Shaving” Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins
  4. Altmetric Badge
    Chapter 3 Methods for Mapping the Extracellular and Membrane Proteome in the Avian Embryo, and Identification of Putative Vascular Targets or Endothelial Genes
  5. Altmetric Badge
    Chapter 4 Mass Spectrometry-Based Identification of Extracellular Domains of Cell Surface N-Glycoproteins: Defining the Accessible Surfaceome for Immunophenotyping Stem Cells and Their Derivatives
  6. Altmetric Badge
    Chapter 5 Application of Higher Density Iron Oxide Nanoparticle Pellicles to Enrich the Plasma Membrane and Its Proteome from Cells in Suspension
  7. Altmetric Badge
    Chapter 6 Proteomic Profiling of Secreted Proteins, Exosomes, and Microvesicles in Cell Culture Conditioned Media
  8. Altmetric Badge
    Chapter 7 Cloning, Expression, and Purification of the Glycosylated Transmembrane Protein, Cation-Dependent Mannose 6-Phosphate Receptor, from Sf9 Cells Using the Baculovirus System
  9. Altmetric Badge
    Chapter 8 Bispecific Antibody Armed T Cells to Target Cancer Cells
  10. Altmetric Badge
    Chapter 9 Immunophenotyping of Live Human Pluripotent Stem Cells by Flow Cytometry
  11. Altmetric Badge
    Chapter 10 Detecting Cell Surface Expression of the G Protein-Coupled Receptor CXCR4
  12. Altmetric Badge
    Chapter 11 NaV Channels: Assaying Biosynthesis, Trafficking, Function
  13. Altmetric Badge
    Chapter 12 High-Content Electrophysiological Analysis of Human Pluripotent Stem Cell-Derived Cardiomyocytes (hPSC-CMs)
  14. Altmetric Badge
    Chapter 13 Methods for Evaluation of Vascular Endothelial Cell Function with Transient Receptor Potential (TRP) Channel Drugs
  15. Altmetric Badge
    Chapter 14 Methods to Study the Signal Transduction of the Surface Receptor Tyrosine Kinase TrkB in Neurons
  16. Altmetric Badge
    Chapter 15 Polarized Human Retinal Pigment Epithelium Exhibits Distinct Surface Proteome on Apical and Basal Plasma Membranes
  17. Altmetric Badge
    Chapter 16 Extracellular Matrix Molecule-Based Capture of Mesenchymal Stromal Cells Under Flow
  18. Altmetric Badge
    Chapter 17 Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses
  19. Altmetric Badge
    Chapter 18 Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell–Matrix Interactions
  20. Altmetric Badge
    Chapter 19 Discovery of Surface Target Proteins Linking Drugs, Molecular Markers, Gene Regulation, Protein Networks, and Disease by Using a Web-Based Platform Targets-search
Attention for Chapter 2: “Shaving” Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
“Shaving” Live Bacterial Cells with Proteases for Proteomic Analysis of Surface Proteins
Chapter number 2
Book title
The Surfaceome
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7553-2_2
Pubmed ID
Book ISBNs
978-1-4939-7551-8, 978-1-4939-7553-2
Authors

Manuel J. Rodríguez-Ortega

Abstract

Surface proteins are essential molecules for the interplay between cells and the environment. They participate in many biological processes including transport, adhesion, cell-cell recognition, signaling, and other cell interactions. In pathogenic microorganisms, these molecules may act as virulence or cytotoxicity factors. Analyzing the set of surface proteins is critical to understand these processes and to identify possible targets that can be the starting point for other studies or discoveries (e.g., vaccines or diagnostics). Here I describe a proteomic procedure to identify in a fast and reliable way a set of surface-exposed proteins in bacteria, the methodology of which can be adapted to other biological systems (unicellular fungi, parasites). The protocol presented here involves "shaving" the cells cultured in broth with proteases followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and analysis of the generated peptides. This method overcomes some important limitations of the first-generation, gel based proteomics techniques, and the "shaving" approach allows one to identify which domains from identified proteins are more accessible to proteases. These identified proteins have the highest potential to be recognized by antibodies, and thus permits the identification of potential epitopes or antigens.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 25%
Student > Bachelor 3 13%
Student > Doctoral Student 2 8%
Other 2 8%
Student > Master 2 8%
Other 4 17%
Unknown 5 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 29%
Agricultural and Biological Sciences 4 17%
Immunology and Microbiology 2 8%
Business, Management and Accounting 1 4%
Unspecified 1 4%
Other 2 8%
Unknown 7 29%