↓ Skip to main content

Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial

Overview of attention for article published in Clinical Nutrition, December 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

twitter
142 X users
facebook
13 Facebook pages

Citations

dimensions_citation
94 Dimensions

Readers on

mendeley
169 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial
Published in
Clinical Nutrition, December 2017
DOI 10.1016/j.clnu.2017.12.004
Pubmed ID
Authors

Fariba Raygan, Vahidreza Ostadmohammadi, Fereshteh Bahmani, Russel J. Reiter, Zatollah Asemi

Abstract

Melatonin may benefit diabetic people with coronary heart disease (CHD) through its beneficial effects on biomarkers of oxidative stress and cardio-metabolic risk. This investigation evaluated the effects of melatonin administration on metabolic status in diabetic patients with CHD. This randomized, double-blind, placebo-controlled trial was conducted and involved 60 diabetic patients with CHD. Subjects were randomly allocated into two groups to receive either 10 mg melatonin (2 melatonin capsules, 5 mg each) (n = 30) or placebo (n = 30) once a day for 12 weeks. Compared with the placebo, melatonin supplementation resulted in significant increases in plasma glutathione (GSH) (+64.7 ± 105.7 vs. -11.1 ± 137.6 μmol/L, P = 0.02) and nitric oxide (NO) (+0.9 ± 4.7 vs. -3.3 ± 9.6 μmol/L, P = 0.03), and significant decreases in malondialdehyde (MDA) (-0.2 ± 0.3 vs. +0.1 ± 0.5 μmol/L, P = 0.007), protein carbonyl (PCO) (-0.12 ± 0.08 vs. +0.03 ± 0.07 mmol/mg protein, P < 0.001) and serum high sensitivity C-reactive protein (hs-CRP) levels (-1463.3 ± 2153.8 vs. +122.9 ± 1230.4 ng/mL, P = 0.001). In addition, taking melatonin, compared with the placebo, significantly reduced fasting plasma glucose (-29.4 ± 49.0 vs. -5.5 ± 32.4 mg/dL, P = 0.03), serum insulin concentrations (-2.2 ± 4.1 vs. +0.7 ± 4.2 μIU/mL, P = 0.008), homeostasis model of assessment-estimated insulin resistance (-1.0 ± 2.2 vs. +0.01 ± 1.6, P = 0.04), total-/HDL-cholesterol ratio (-0.18 ± 0.38 vs. +0.03 ± 0.35, P = 0.02) and systolic (-4.3 ± 9.6 vs. +1.0 ± 7.5 mmHg, P = 0.01) and diastolic blood pressure (-2.8 ± 7.3 vs. +0.1 ± 3.6 mmHg, P = 0.04). Melatonin treatment also significantly increased quantitative insulin sensitivity check index (+0.006 ± 0.01 vs. -0.004 ± 0.01, P = 0.01) and serum HDL-cholesterol (+2.6 ± 5.5 vs. -0.01 ± 4.4 mg/dL, P = 0.04). Supplementation with melatonin had no significant effect on other metabolic parameters. Overall, melatonin intake for 12 weeks to diabetic patients with CHD had beneficial effects on plasma GSH, NO, MDA, PCO, serum hs-CRP levels, glycemic control, HDL-cholesterol, total-/HDL-cholesterol ratio, blood pressures and parameters of mental health. Registered under ClinicalTrials.gov Identifier no. http://www.irct.ir: IRCT2017051333941N1.

X Demographics

X Demographics

The data shown below were collected from the profiles of 142 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 169 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 169 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 24 14%
Student > Master 17 10%
Researcher 17 10%
Student > Ph. D. Student 14 8%
Student > Postgraduate 8 5%
Other 26 15%
Unknown 63 37%
Readers by discipline Count As %
Medicine and Dentistry 37 22%
Nursing and Health Professions 14 8%
Biochemistry, Genetics and Molecular Biology 8 5%
Pharmacology, Toxicology and Pharmaceutical Science 6 4%
Psychology 5 3%
Other 25 15%
Unknown 74 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 95. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 December 2020.
All research outputs
#454,867
of 25,746,891 outputs
Outputs from Clinical Nutrition
#161
of 3,713 outputs
Outputs of similar age
#10,153
of 446,147 outputs
Outputs of similar age from Clinical Nutrition
#4
of 46 outputs
Altmetric has tracked 25,746,891 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,713 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 18.4. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 446,147 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.